CHEMICAL, BIOLOGICAL, AND ENVIRONMENTAL ENGINEERING 213 (4)
Process Data Analysis
Spring 2018
http://classes.engr.oregonstate.edu/cbee/spring2018/cbee213-010/

Instructor: Professor Milo Koretsky milo.koretsky@oregonstate.edu
201 Gleeson
Dr. Ed Michor michore@oregonstate.edu
105 Gleeson

Teaching Assistants: Elliott Fowler Studio: W 8-10 (102); 4-6 (103)
Rich Hilliard Studio: W 12-2; 2-4; 4-6 (102)
Dylan Oney Studio: W 8-10; 12-2; 2-4 (103)

Learning Assistants: Blake Bronson Studio: W 12-2 (102); W 4-6 (103)
Levi Clark Studio: W 8-10 (103); W 2-6 (floater)
Alfie Davis Studio: W 2-4 (102); W 4-6 (102)
Anthony Pyka Studio: W 12-2 (103); W 2-4 (103)
Jake Cook Studio: W 8-10 (102)

Class Times: Lecture/ Recitation: TR 4-6 210 LINC
Studio: See above BEXL 102 and 103

Prerequisites: CBEE 212
This prerequisite will be enforced

Help Hours: Milo Koretsky: M 4-6 (Wks 1,2,5,6,9,10) 200 Gleeson
Ed Michor: M 4-6 (Wks 3,4,7,8) 200 Gleeson
Elliott Fowler: T: 2:30-3:30 306 Gleeson
Rich Hilliard: M 4-6 200 Gleeson
Dylan Oney: F 2:30-3:30 306 Gleeson

There will be a MATLAB help session Monday April 16 6-8 PM
You can also schedule an appointment with the instructor or GTAs via email; please list at least three available times in your email.

Instructional Resources:
We will use open access educational resources, including:
Collaborative Statistics https://cnx.org/contents/XgdE-Z55@40.9:XgdE-Z55
Introductory Statistics
https://cnx.org/contents/MBiUQmmY@18.137:2T34_25K@11/Introduction
Concepts and Applications of Inferential Stats http://vassarstats.net/textbook/
Course Description:
Statistics provides a powerful set of tools for improving the quality of designs, processes, and products. This course provides a brief introduction to the use of applied statistics in the chemical process industry. Application of statistics will be integrated to ChE, BioE, and EnvE problem solving through case studies.

Course Goals:
1. Develop an awareness of the utility of statistics in assessing experimental data and operating industrial chemical, biological, and environmental processes.
2. Describe the basic concepts and nomenclature associated with applied statistics, regression, Statistical Process Control, and Design of Experiments.
3. Work through real industrial examples (case studies) in the fields of chemical, biological and environmental engineering to gain experience with these tools.
4. Utilize computer software (Microsoft Excel, StatGraphics) to aid in statistical analysis.

Course Learning Objectives:
By the end of the course, you will be able to:
1. By hand and using software, perform the following: (1) statistically summarize data including measures of central tendency and dispersion, and (2) use the appropriate graphical form to summarize data for analysis including box plots, scatter plots and histograms. Match given graphical output to the corresponding summary statistics. Explain trends in data based on these methods.
2. List the key characteristics of probability distributions, in particular the normal distribution. Given a histogram, explain how it relates to the normal distribution. Given a mean, standard deviation and observed value, calculate the z-score and find the corresponding percentile. Identify populations that follow a binominal distribution and a Poisson distribution.
3. Describe the sampling distribution of a statistic, in particular the t distribution and the χ^2 distribution. Given a study, describe what role statistical inference plays in terms of the population and sample. Calculate confidence intervals. Statistically analyze data for significance and compare sets of data. Define the standard error of a statistic.
4. Fit experimental data to an empirical model equation using least squares analysis. For linear regression, both by hand and using software, calculate the slope intercept and correlation coefficient. Explain the relation between the slope of the regression line and the correlation coefficient.
5. Given data from a process, calculate control limits and capability (C_p and C_{pk}). Distinguish between specification limits and control limits. Make SPC control charts, including x, x-bar R, and x-bar S charts.
6. Quantify the effect of (i) a single factor and (ii) two factors on a process by applying Analysis of Variance (ANOVA).
7. In the context of Design of Experiments (DOE), (i) set up a balanced design array, (ii) create a marginal means plots and/or an interaction plot from the experimental response, and (iii) develop an empirical model equation.
Course Grades:
The grades will be based upon examination of course work. An approximate breakdown is as follows:

- Concept Warehouse: 10% + 10% bonus
- Studio: 10%
- Pre-lecture quizzes: 5%
- Homework: 10%
- Midterm Exam: 30%
- Final Exam: 35%

A modified, standard grading scale will be used:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100</td>
<td>A, A’</td>
</tr>
<tr>
<td>77.5 – 90</td>
<td>B+, B, B’</td>
</tr>
<tr>
<td>65 – 77.5</td>
<td>C+, C</td>
</tr>
<tr>
<td>Below 65</td>
<td>Not passing</td>
</tr>
</tbody>
</table>

Concept Warehouse (10% + 10% bonus)
We will be doing graded interactive activities regularly in class using the AIChE Concept Warehouse: http://jimi.cbee.oregonstate.edu/concept_warehouse. You need to bring a device (laptop, tablet, smartphone) to every lecture. While all students are required to have a laptop as part of the College of Engineering’s wireless laptop initiative: http://engineering.oregonstate.edu/content/laptop-requirements a smart phone, PDA, or iPad will also work with the AIChE Concept Warehouse, as long as it has internet connectivity and a web browser.

Studios (10%):
The studio sections will contain both computer and hands-on data collection and analysis. Studios will review lecture materials in an “active learning” environment, supporting the content and context of the previous lectures. In each studio, students will complete an assignment which may include solving problems in class, discussing concepts with peers, or running a simulation. You need to bring a wireless laptop and your textbook to class every studio, unless the instructor announces that you do not have to. Completed assignments will be turned in to the GTA at the end of each studio period and computer work will be turned in on TEACH (https://secure.engr.oregonstate.edu:8000). Students will be graded primarily on participation in the assigned activities.

Pre-Lecture Quizzes (5%) To prepare for lecture, there will be a short pre-lecture quiz on posted reading or other material. These will typically be available on the Concept Warehouse.

Homework (10%):
The way you approach homework has the largest influence on exam performance of anything you do in this class. Unless otherwise stated by the instructor, you are not allowed to look at any solutions of the assigned problems worked by others (e.g., from previous years, the Web, solutions manual, your classmates etc.), before the homework due date - even to check your work. Using worked solutions will be is considered as academic dishonesty and may result in an F grade in the class. Assisting others to do this is also considered as academically dishonest.
Homework is instrumental in helping you grasp fundamental concepts and in exposing you to techniques and skills for applying these principles to real-life situations. Homework should be done in several sittings; you cannot expect to be successful doing homework quickly the night before it is due. Homework will be available on the web by Tues. and due at the beginning of class the following Tues. Any late homework will receive a grade of 0 unless arrangements are made with the instructor before it is due. Failure to turn in more than 2 homework assignments will result in a grade of F in the class.

You may discuss homework problems with your classmates (NOT COPY THEIR SOLUTIONS), but please try them on your own first. Additionally solutions must be written up independently.

Exams:
If you MUST miss an exam for an emergency situation, please let me know as soon as possible. If you skip an exam, you will not have an opportunity to make it up. If you have a valid (according to me) time conflict and you let me know in advance, there is the possibility of taking an exam at an alternate time.

Midterm Exam (30%):
There will be a midterm exam, tentatively scheduled for May 8 in class (individual portion) and May 9 in studio (team portion). You will be asked, in part, to apply the fundamental principles that have been covered in the course to entirely new problems. There will be a group portion for extra credit in the studio immediately following. If you want the extra points, you need to attend that studio.

Final Exam (35%):
The Final Exam is scheduled for Tuesday, June 12, 6:00 – 7:50 PM. Please make sure to schedule summer activities so that you are available to take the Final. Requests to take the exam early for non-professional reasons will not be granted.

Class Attendance:
Attendance is MANDATORY! You are expected to attend every class and participate in discussion. Lectures are designed to supplement, not replace, the reading material, and to develop problem-solving skills. If you are not able to make class, notify the instructor before class. Unexcused absences may lower your final course grade. Historically, students who attend regularly do 10-20% better on exams. If you do miss class, it is your responsibility to find out what was covered and any administrative information that was discussed.

Summer Research Experiences and other Extracurricular Professional Activities:
This class is scheduled for 10 weeks ending at the Final Exam on June 12; there is studio every week. If you will miss any of the required activities, you need to let me know, in writing, before the activity takes place. It is your responsibility to make up any assignments and class activities that you will miss and to get the information covered during class. Students leaving early for a summer research experience must have a B or better in the class, and will be given the Final in the week before Fall term starts.
Wireless Laptop Computer:
You need to bring a wireless laptop to your studio section. All students are required to have a laptop as part of the College of Engineering’s wireless laptop initiative.

We will make extensive use of the following software:
Excel – make sure to have both “Solver…” and “Data Analysis…” Add-ins in the Tools menu
StatGraphics - StatGraphics is available to OSU Faculty, staff & students for institutional purposes and may be installed on home workstations. StatGraphics is available on the OSUware CD.
MATLAB

Disruptive Behavior
While the University is a place where the free exchange of ideas and concepts allows for debate and disagreement, all classroom behavior and discourse should reflect the values of respect and civility. Behaviors which are disruptive to the learning environment will not be tolerated. As your instructors, we are dedicated to establishing a learning environment that promotes diversity of race, culture, gender, sexual orientation, and physical disability. Anyone noticing discriminatory behavior in this class, or feeling discriminated against should bring it to the attention of the instructors or other University personnel as appropriate.

The following specific behavior is not allowed:
- No cell phones for non-class use. No text messages!
- No use of Laptops or other electronic devices for activity outside of its use in THIS class (i.e, surf the web, email, pictures)

Cheating and Student Conduct:
The instructors of this class take the issue of academic honesty very seriously. You are expected to be honest and ethical in your academic work. There is a “zero tolerance” policy in effect for cheating in this class. Any instance in which a student is caught cheating will be handled in strict accordance with the policies outlined at http://oregonstate.edu/studentconduct/offenses-0. In order to provide students with a positive learning environment, OSU has adopted a pledge of civility, which can be found at http://osu.orst.edu/admin/stucon/index.htm.

Academic dishonesty is defined as an intentional act of deception in one of the following areas:
- Cheating- use or attempted use of unauthorized materials, information or study aids
- Fabrication- falsification or invention of any information
- Assisting- helping another commit an act of academic dishonesty
- Tampering- altering or interfering with evaluation instruments and documents
- Plagiarism- representing the words or ideas of another person as one's own
Using solutions worked by others to prepare your HW will be considered as a case of academic dishonesty and may result in an F grade in the class.

When evidence of academic dishonesty comes to the instructor's attention, the instructor will document the incident, permit the accused student to provide an explanation, advise the student of possible penalties, and take action. The instructor may impose any academic penalty up to and including an "F" grade in the course after consulting with his School Head and informing the student of the action taken.

Statement Regarding Students with Disabilities:
Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 541-737-4098.

Religious Holiday Statement:
Oregon State University strives to respect all religious practices. If you have religious holidays that are in conflict with any of the requirements of this class, please see me immediately so that we can make alternative arrangements.

Diversity Statement:
Oregon State University strives to create an affirming climate for all students including underrepresented and marginalized individuals and groups. Diversity encompasses differences in age, color, ethnicity, national origin, gender, physical or mental ability, religion, socioeconomic background, veteran status, sexual orientation, and marginalized groups. We believe diversity is the synergy, connection, acceptance, and mutual learning fostered by the interaction of different human characteristics.