Instructor: Dr. Christopher Higgins, P.E.
 chris.higgins@orst.edu
 Office: Owen Hall 348
 Phone: 541-737-8869
 Office Hours: 4:00 to 5:00 PM T and Th
 or by appointment

GTA: Mr. Akshay Pawar
 Office: Covell 017
 Email: pawara@oregonstate.edu
 Office Hours: TBD

Prerequisites: CE 381 Structural Analysis

Text: No required text. Several good reference texts:
 Design of Concrete Structures, 15th Ed. Darwin, Dolan, and Nilson, McGraw-Hill
 Reinforced Concrete: Mechanics and Design, Wight, and MacGregor, Prentice Hall

Code (Required): ACI 318-14, (2014). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Detroit, MI. ($99)

Topics:
 Introduction to Concrete

 Introduction to Load and Resistance Factor Design for Concrete

 Background Codes and Specifications: ACI 318

 Mechanical Properties of Concrete and Reinforcing Steel

 Analysis and Design of Flexural Members
 Tension reinforcement
 Tension and compression reinforcement

 Analysis and Design for Shear in Beams

 Development, Anchorage, and Splicing of Reinforcement

Grading:
 Homework/Quiz: 30%
 Midterm Exam: 30%
 Final Exam: 30%
 Class Part.: 10%
Policies:
1. Homework is due the following week after assignment. The instructor will note any exceptions to this deadline in class.
2. Late homework will not be accepted without valid excuse.
3. Graduate students will be required to prepare a review of a recent journal article regarding a reinforced concrete topic of their choice as approved by the instructor. Instructions for this assignment are posted on canvas.
4. Graduate students will also be required to solve additional problems on exams.
5. All work will be done in a neat, well-organized, professional manner as follows:
 a) Pencil and engineering paper will be used.
 b) All work will be printed or legibly written. If the Professor or Teaching Assistant cannot read your handwriting you cannot get credit for your work.
 c) Only one side of the paper will be used.
 d) Problem sets will be stapled at upper left corner.
 e) Lines shall be drawn with a straight edge and circles shall be drawn with a compass or circle template.
 f) Course number, date, student's name and page number will be shown at the top of each sheet.
 g) Problem number and a problem statement will appear before each problem. The problem statement should include the essence of what is given, what you are to find and a figure when appropriate.
 h) The problem solution must be presented in a logical, orderly fashion, including fundamental equations used and sufficient (but brief) written text to explain your procedure.
 i) Answers will be boxed. The answers must include the correct units and show an appropriate number of significant figures.
 j) Homework and exams shall be formatted with “Given”, “Find”, and “Solution” format discussed during class.
6. Answering questions about the readings can be typed if the student prefers. If handwritten answers are provided, handwriting must be legible.

Note: Homework submitted in an unprofessional manner (sloppy, disorganized, or difficult to read/follow) will be returned to the student at the next class session. It may be resubmitted for a maximum of 80% credit 1 week after the original due date. If not resubmitted at that time, a grade of 0% will be given.

Academic Integrity:
Academic or Scholarly Dishonesty is defined as an act of deception in which a Student seeks to claim credit for the work or effort of another person, or uses unauthorized materials or fabricated information in any academic work or research, either through the Student’s own efforts or the efforts of another. It includes:

- **cheating** - use or attempted use of unauthorized materials, information or study aids, or an act of deceit by which a Student attempts to misrepresent mastery of academic effort or information. This includes but is not limited to unauthorized copying or collaboration on a test or assignment, using prohibited materials and texts, any misuse of an electronic device, or using any deceptive means to gain academic credit.
- **fabrication** - falsification or invention of any information including but not limited to falsifying research, inventing or exaggerating data, or listing incorrect or fictitious references.
- **assisting** - helping another commit an act of academic dishonesty. This includes but is not limited to paying or bribing someone to acquire a test or assignment, changing someone's grades or academic records, taking a test/doing an assignment for someone else by any means, including misuse of an electronic device. It is a violation of Oregon state law to create and offer to sell part or all of an educational assignment to another person (ORS 165.114).
- **tampering** - altering or interfering with evaluation instruments or documents.
- **plagiarism** - representing the words or ideas of another person or presenting someone else's words, ideas, artistry or data as one's own, or using one's own previously submitted work. Plagiarism includes but is not limited to copying another person's work (including unpublished material) without appropriate referencing, presenting someone else's opinions and theories as one's own, or working jointly on a project and then submitting it as one's own.
For more information about academic integrity and the University's policies and procedures in this area, you are welcome to visit the Student Conduct web site at:
http://oregonstate.edu/studentconduct/regulations/index.php#acdis

For more information about student conduct expectations, please see:
http://studentlife.oregonstate.edu/sites/studentlife.oregonstate.edu/files/code_of_student_conduct.pdf

The School of Civil and Construction Engineering (CCE) Honor Code, calculator policy, and the ASCE Code of Ethics can be found here: http://cce.oregonstate.edu/honor-code-and-codes-conduct

Disruptive Behavior:
Students are expected to maintain an appropriate learning environment in the classroom. Students have a responsibility to treat each other with dignity and respect. Examples of disruptive behaviors include: being late, reading the paper, sleeping during class, making noises, repeatedly interrupting, passing notes, answering cell phone, harassing behavior, and inappropriate language. Disruptive behavior will not be tolerated and will impact the class participation portion of the final grade. The golden rule applies here.

Disabled Student Assistance:
Accommodations for students with disabilities are determined and approved by Disability Access Services (DAS). If you, as a student, believe you are eligible for accommodations but have not obtained approval please contact DAS immediately at 541-737-4098 or at http://ds.oregonstate.edu. DAS notifies students and faculty members of approved academic accommodations and coordinates implementation of those accommodations. While not required, students and faculty members are encouraged to discuss details of the implementation of individual accommodations.

Learning Objectives:
After this course, students should be able to:

1) Employ classical structural analysis methods for analysis and design of statically determinate reinforced concrete beams.

2) Identify typical material parameters for reinforced concrete structural elements including:
 a. Size and grade of reinforcing steel.
 b. Concrete mechanical properties (Modulus of elasticity, f‘c, modulus of rupture).

3) Apply strain compatibility analysis for analysis and design of reinforced concrete beams.

4) Apply code provisions for concrete beams including strength, (flexure and shear) and detailing of reinforcing (development).

5) Design and detail a reinforced concrete beam with tension-only reinforcement for flexure and shear.

6) CE581: Demonstrate a more thorough understanding of LO 1-5 through a project or technical paper review, and additional exam problems.