CS275 – Intro to Databases

How does a DBMS work? - Chap. 1.3 - 1.9

File Systems vs. DBMS

- We have to write special programs for queries
- We have to protect data from inconsistencies
- We have to handle crashes
- We have to control access w/ passwords

- What is the common theme?

Why is a DBMS so important?

- A DBMS is software designed to assist in maintaining and utilizing large collection of data.
 - A large amount of data,
 - Concurrent access by many users,
 - Fast access,
 - Consistent data update,
 - Role-based security,
 - Robust against hardware failures and OS crashes.
Why and When Do We Need DBMS?

• Advantages of DBMS
 – Data independence (you can still access the data using Windows 95).
 • Hide data representation
 • Hide data storage

• Advantages of DBMS
 – Efficient data access
 • High-quality data compression schemes,
 • Fast data retrieval and search algorithms.

• Advantages of DBMS
 – Data integrity and security
 • Prevent invalid queries from being executed,
 • Access control can be enforced.
Why and When Do We Need DBMS?

• Advantages of DBMS
 – Centralized data administration
 • The DBA can optimize the organization of the data to facilitate its uses.

• Advantages of DBMS
 – Concurrent access
 – Crash recovery
 – Reduced application development time

• Disadvantages of DBMS
 – High startup cost (time and effort)
 – Relatively high maintenance
When Not to Use a DBMS?

How Is Data Represented?

• A data model
 — A collection of high-level data descriptions,
 — Hides low-level storage details.
• A semantic data model
 — More abstract,
 — Serves as a startup point for the design,
 — Farther away from the physical storage than a data model.

How Is Data Represented?

• The relational model
 — Relation (records)
 — Schema
 • Data descriptions, such as name of the relation and individual field.
 Students(sid: string, name: string, login: string,
 age: integer, gpa: real)
 — Integrity Constraints
How Is Data Represented?

• Levels of Abstraction

How Is Data Represented?

• Conceptual Schema (logical schema)
 – Data Model/Relationships

Students(sid: string, name: string, login: string, age: integer, gpa: real)
Faculty(fid: string, fname: string, sal: real)
Courses(cid: string, cname: string, credits: integer)
Enrolled(sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)

How Is Data Represented?

• Physical Schema
 – Data Storage
 – Based on Access
How Is Data Represented?

• External Schema
 – Different Views
 – Defined by end user requirements

Courseinfo(cid: string, fname: string, enrollment: integer)

How Is Data Represented?

• Data Independence
 – Logical data independence

How Is Data Represented?

• Data Independence
 – Physical data independence
How Is Data Retrieved and Manipulated?

• Queries
 – Data manipulation language (DML)
 • Retrieval
 • Add
 • Delete
 • Update

How Does DBMS Support Concurrent Access & Crashes?

• Transaction
 – Any one execution of a user program in DBMS.
 • A single command
 • Group several commands/queries into one transaction
 – Locking protocol
 • Shared vs. Exclusive
 • Row level vs. Table level
 • Read vs. Write
 – Log
 • Finalizes transaction
 • Checkpoints

Who is Involved With Databases in Real Life?

• Database application programmers
• Database administrators
 – Conceptual and physical schemas
 – Security and authorization
 – Data availabilities and recoveries
 – Database tuning
Questions?