About midterm

• Exam will be closed book, closed notes
• The questions are designed such that you will not need a calculator to get the answers
• Extra office hour tomorrow 10 – 12
Frequent pattern mining: association rules

CS434
What Is Frequent Pattern Mining?

- **Frequent pattern**: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set

- **Motivation**: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?

- **Broad applications**
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis
 - DNA sequence analysis
Association rules

Data: Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs, Coke},
{Beer, Bread} → {Milk},

Implication means **co-occurrence, not causality!**

Given a set of transactions, find rules that will **predict the occurrence of an item based on the occurrences of other items** in the transaction
Definition: Frequent Itemset

- **Itemset**
 - A collection of one or more items
 - Example: \{Milk, Bread, Diaper\}
 - k-itemset
 - An itemset that contains k items

- **Support count (\(\sigma\))**
 - Frequency of occurrence of an itemset
 - E.g. \(\sigma(\{\text{Milk, Bread,Diaper}\}) = 2\)

- **Support**
 - Fraction of transactions that contain an itemset
 - E.g. \(s(\{\text{Milk, Bread, Diaper}\}) = 2/5\)

- **Frequent Itemset**
 - An itemset whose support is greater than or equal to a *minsуп* threshold

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form \(X \rightarrow Y \), where \(X \) and \(Y \) are itemsets
 - Example:
 \{Milk, Diaper\} \rightarrow \{Beer\}

- **Rule Evaluation Metrics**
 - Support (\(s \))
 - Fraction of transactions that contain both \(X \) and \(Y \): \(P(X \cap Y) \)
 - Confidence (\(c \))
 - Measures how often items in \(Y \) appear in transactions that contain \(X \): \(P(Y | X) \)

Example:
\{Milk, Diaper\} \Rightarrow Beer

\[
\begin{align*}
 s &= \frac{\sigma(Milk, Diaper, Beer)}{|T|} = \frac{2}{5} = 0.4 \\
 c &= \frac{\sigma(Milk, Diaper, Beer)}{\sigma(Milk, Diaper)} = \frac{2}{3} = 0.67
\end{align*}
\]
Problem definition: Association Rules Mining

- **Inputs:**
 - Itemset \(X = \{ x_1, \ldots, x_k \} \),
 - thresholds: \(\text{min}_\text{sup}, \text{min}_\text{conf} \)

- **Output:**
 - All the rules \(X \rightarrow Y \) having:
 - support \(P(X \cap Y) \geq \text{min}_\text{sup} \)
 - confidence \(P(Y | X) \geq \text{min}_\text{conf} \)

Let \(\text{min}_\text{sup} = 50\%, \text{min}_\text{conf} = 50\% \):

- \(A \rightarrow C \) (50%, 66.7%)
- \(C \rightarrow A \) (50%, 100%)

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C</td>
</tr>
<tr>
<td>20</td>
<td>A, C</td>
</tr>
<tr>
<td>30</td>
<td>A, D</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>
Brute-force solution

• List all possible association rules
• Compute the support and confidence for each rule
• Prune rules that fail the min_{sup} and min_{conf} thresholds

⇒ Computationally prohibitive!
Mining Association Rules

Example of Rules:

- \{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} (s=0.4, c=0.67)
- \{\text{Milk, Beer}\} \rightarrow \{\text{Diaper}\} (s=0.4, c=1.0)
- \{\text{Diaper, Beer}\} \rightarrow \{\text{Milk}\} (s=0.4, c=0.67)
- \{\text{Milk, Beer}\} \rightarrow \{\text{Diaper}\} (s=0.4, c=0.67)
- \{\text{Milk}\} \rightarrow \{\text{Diaper, Beer}\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset:
 \{\text{Milk, Diaper, Beer}\}

- Rules originating from the same itemset have identical support but can have different confidence

- Thus, we may decouple the support and confidence requirements

- We can first find all frequent itemsets that satisfy the support requirement
Mining Association Rules

• Two-step approach:
 1. Frequent Itemset Generation
 – Generate all itemsets whose support $\geq \minsup$

 2. Rule Generation
 – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive
Frequent Itemset Generation

Given \(d \) items, there are \(2^d \) possible candidate itemsets
Frequent Itemset Generation

• Brute-force approach:
 – Each itemset in the lattice is a candidate frequent itemset
 – Count the support of each candidate by scanning the database
 – Match each transaction against every candidate
 – Complexity $\sim O(NMw) \Rightarrow \text{Expensive since } M = 2^d !!!$

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
 - If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
 - i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}

- Apriori principle holds due to the following property of the support measure:

\[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 - Support of an itemset never exceeds the support of its subsets
 - This is known as the anti-monotone property of support
Illustrating Apriori Principle

Found to be Infrequent

Pruned supersets
Illustrating Apriori Principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread,Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread,Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread,Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk,Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk,Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer,Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Min Support count = 3

If every subset is considered, $C_1^6 + C_2^6 + C_3^6 = 41$

With support-based pruning, $6 + 6 + 1 = 13$

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread,Milk,Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Triplets (3-itemsets)
The Apriori Algorithm

• Method:

 – Let k=1
 – Generate frequent itemsets of length 1
 – Repeat until no new frequent itemsets are identified
 • Generate length (k+1) candidate itemsets from length k frequent itemsets
 • Prune candidate itemsets containing subsets of length k that are infrequent
 • Count the support of each candidate by scanning the DB
 • Eliminate candidates that are infrequent, leaving only those that are frequent
The Apriori Algorithm

- **Pseudo-code:**

 C_k: Candidate itemset of size k

 L_k: frequent itemset of size k

 \[L_1 = \{ \text{frequent items} \}; \]

 \[\text{for} \ (k = 1; \ L_k \neq \emptyset; \ k++) \ \text{do begin} \]

 \[C_{k+1} = \text{candidates generated from } L_k; \]

 \[\text{for each transaction } t \text{ in database do} \]

 \[\text{increment the count of all candidates in } C_{k+1} \]

 \[\text{that are contained in } t \]

 \[L_{k+1} = \text{candidates in } C_{k+1} \text{ with min}_\text{support} \]

 \[\text{end} \]

 \[\text{return } \bigcup_k L_k; \]
How to Generate Candidates?

• Suppose the items in L_k are listed in an order (e.g., alphabetic ordering)

• Step 1: self-joining L_k

 For all itemsets p and q in L_k such that

 $$p.item_i = q.item_i \text{ for } i = 1, 2, ..., k-1 \text{ and } p.item_k < q.item_k$$

 Add to C_{k+1}

 $$p.item_1, p.item_2, ..., p.item_k, q.item_k$$

• Step 2: pruning

 For all itemsets c in C_{k+1} do

 For all (k)-subsets s of c do

 if (s is not in L_k) then delete c from C_{k+1}
Important Details of Apriori

Self-joining rule:
1. we join two itemsets if and only if they only differ by their last item
2. When joining, the items are always ranked based on a fixed ordering of the items (e.g., alphabetic ordering)

• Example of Candidate-generation
 – \(L_3 = \{abc, abd, acd, ace, bcd\} \)
 – Self-joining: \(L_3 \times L_3 \)
 • \(abcd \) from \(abc \) and \(abd \)
 • \(acde \) from \(acd \) and \(ace \)
 – Pruning:
 • \(acde \) is removed because \(ade \) is not in \(L_3 \)
 – \(C_4 = \{abcd\} \)

Why not abd, and acd -> abcd?
Why should this work?

• How can we be sure we are not missing any possible itemset?

• This can be seen by proving that for every possible frequent k+1-itemset, it will be included using this self-joining process

Proof
For any k +1 item set S (with items ranked), it will be included by joining the following two subsets:
1. \(S_k = \{ \text{the first } k \text{ items of } S \} \)
2. \(S'_k = S \text{ with the } k\text{-th item removed} \)

Clearly \(S_k \) and \(S'_k \) are frequent, and differ by only the last item. So they must satisfy the self-join condition and \(S_k \cap S'_k = S \)
The Apriori Algorithm—An Example

\(\text{Sup}_{\min} = \frac{2}{4} \)

Database TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

\(C_1 \) 1st scan

\(L_1 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

\(C_2 \) 2nd scan

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

\(C_3 \) 3rd scan

<table>
<thead>
<tr>
<th>Itemset</th>
<th>{A, B, C}?</th>
</tr>
</thead>
</table>

\(L_3 \)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>
Mining Association Rules

• Two-step approach:
 1. Frequent Itemset Generation
 – Generate all itemsets whose support ≥ minsup
 2. Rule Generation
 – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
 – Enumerate all possible rules from the frequent itemset and out these of high confidence
Example: Generating rules

- **Min_conf = 80%**

Database TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

L2

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

L3

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Rules:

- \(A \rightarrow C: 100\% \)
- \(C \rightarrow A: 66.7\% \)
- \(B \rightarrow C: 66.7\% \)
- \(C \rightarrow B: 66.7\% \)
- \(B \rightarrow E: 100\% \)
- \(E \rightarrow B: 100\% \)
- \(C \rightarrow E: 66.7\% \)
- \(E \rightarrow C: 66.7\% \)
- \(B, C \rightarrow E: 100\% \)
- \(B, E \rightarrow C: 66.7\% \)
- \(C, E \rightarrow B: 100\% \)
Frequent-Pattern Mining: Summary

• Frequent pattern mining—an important task in data mining
• “Scalable” frequent pattern mining methods
 – Apriori (Candidate generation & test)
 ▪ The Apriori property has also been used in mining other type of patterns such as sequential and structured patterns
 ▪ Problem: frequent patterns are not necessarily interesting patterns
 ▪ Bread -> milk is not really interesting although it has high support and confidence
 ▪ Many other measures of interestingness exist to address this problem
 ▪ Such as “unexpectedness”
Comparing Association rule with Supervised learning

• Supervised learning
 – Have predefined class variable
 – Focus on difference one class from another

• Association rule mining
 – Do not have predefined target class variable
 – Right hand side of the rule can have many items
 – We could place the class variable C on the right hand side of a rule, but it does not focus on differentiating classes, but more on characterizing a class
What you need to know

• What is an association rule?
• What are the support and confidence of a rule?
• The apriori property
• How to find frequent itemset using the apriori property
 – The Candidate Generation: self-join, and prune
 – Why is it correct?
• How to produce association rules based on frequent itemsets?