Ensemble Learning
Ensemble Learning

• So far we have seen learning algorithms that take a training (data) set and output a classifier (or clustering solution)

• What if we want more accuracy than current algorithms afford?
 – Develop new learning algorithm
 – Improve existing algorithms

• Another approach is to leverage the algorithms we have via ensemble methods
 – Instead of calling an algorithm just once
 – Call algorithm multiple times and combine the multiple outputs

• Can be used in both supervised and unsupervised learning
 – We will focus on supervised ensemble learning here
Supervised Ensemble Learning

Traditional:

Training set \(S \) → Learner \(L_1 \) → Classifier \(h_1 \) → \(y^* = h_1(x) \)

Ensemble method:

Training set \(S \) → \(L_1, L_2, \ldots, L_S \) → \(h_1, h_2, \ldots, h_S \) → \(h^* = F(h_1, h_2, \ldots, h_S) \) → \(y^* = h^*(x) \)

Different training sets and/or learning algorithms

\(y^* = h_1(x) \)
Why Ensemble Learning?

- **INTUITION:** Combining predictions of multiple classifiers (an ensemble) is more accurate than a single classifier.

- Justification:
 - easy to find quite good “rules of thumb” however hard to find single highly accurate prediction rule.
 - If the training set is small and the hypothesis space is large then there may be many equally accurate classifiers.
 - Hypothesis space does not contain the true function, but it has several good approximations.
 - Exhaustive global search in the hypothesis space is expensive so we can combine the predictions of several locally accurate classifiers.
How to generate ensemble?

• There are a variety of methods developed

• We will look at two of them:
 – Bagging
 – Boosting (Adaboost: adaptive boosting)

• Both of these methods takes a single learning algorithm (we will call it *the base learner*) and use it multiple times to generate multiple classifiers
Bagging: **Bootstrap Aggregation**
(Breiman, 1996)

Bagging carries out the following steps:

1. Create T bootstrap training sets S_1, \ldots, S_T from S
 (see next slide for bootstrap procedure)

2. For each i from 1 to T
 $h_i = \text{Learn}(S_i)$.

3. Hypothesis: $H(x) = \text{majorityVote}(h_1(x), h_2(x), \ldots, h_T(x))$

Final hypothesis is just the majority vote of the ensemble members.
That is, return the class that gets the most votes.
Generate a Bootstrap sample of S

Given S, let $S' = \{\}$
For $i = 1, ..., N$ (the total number of points in S)
 draw a random point from S and add it to S'
End
Return S'

- This procedure is called **sampling with replacement**
 - Each time a point is drawn, it will not be removed
 - This means that we can have multiple copies of the same data point in my sample
 - size of $S' = \text{size of } S$
 - On average, 66.7% of the original points will appear in S'
The true decision boundary
Decision Boundary by
the CART Decision Tree Algorithm

Note that the decision tree has trouble representing this decision boundary
By averaging 100 trees, we achieve better approximation of the boundary, together with information regarding how confident we are about our prediction.
Another Example

- Consider bagging with the linear perceptron base learning algorithm
- Each bootstrap training set will give a different linear separator
- Voting is **similar** to averaging them together (not equivalent)
Empirical Results for Bagging Decision Trees
(Freund & Schapire)

Each point represents the results of one data set

Why can bagging improve the classification accuracy?
The Concept of Bias and Variance

The circles represent the hypothesis space.
Bias/Variance for classifiers

• Bias arises when the classifier cannot represent the true function – that is, the classifier underfits the data
 – If the hypothesis space does not contain the target function, then we have bias

• Variance arises when classifiers learned on minor variations of data result in significantly different classifiers – variations cause the classifier to overfit differently
 – If the hypothesis space has only one function then the variance is zero (but the bias is huge)

• Clearly you would like to have a low bias and low variance classifier!
 – Typically, low bias classifiers (overfitting) have high variance
 – High bias classifiers (underfitting) have low variance
 – We have a trade-off
Effect of Algorithm Parameters on Bias and Variance

• k-nearest neighbor k:
 increasing k typically increases bias and reduces variance

• Decision trees of depth D:
 increasing D typically increases variance and reduces bias
Why does bagging work?

• Bagging takes the average of multiple models -- reduces the variance
• This suggests that bagging works the best with low bias and high variance classifiers such as ...
• Un-pruned decision trees
• Bagging typically will not hurt the performance
Boosting
Boosting

• Also an ensemble method: the final prediction is a combination of the prediction of multiple classifiers.

• What is different?
 – It’s iterative.

 Boosting: Successive classifiers depends upon its predecessors - look at **errors from previous classifiers** to decide what to **focus** on for the next iteration over data

 Bagging: Individual training sets and classifiers were independent.
 – All training examples are used in each iteration, but with different weights – more weights on difficult examples. (the ones we made mistakes before)
Adaboost: Illustration

Final Classifier

\[H(X) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) \]

Original data: uniformly weighted

Update weights

Weighted Sample

\[h_1(x) \]

Weighted Sample

\[h_2(x) \]

Weighted Sample

\[h_3(x) \]

Weighted Sample

\[h_M(x) \]
AdaBoost (High level steps)

- AdaBoost performs M boosting rounds, creating one ensemble member in each round.

Operations in l’th boosting round:

1. Call $Learn$ on data set S and weights D_l to produce l’th classifier h_l. Where D_l is the weights of round l.

2. Compute the $(l+1)$’th round weights D_{l+1} by putting more weight on instances that h_l makes errors on.

3. Compute a voting weight α_l for h_l.

The ensemble hypothesis returned is:

$$H(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m \cdot h_m(x) \right]$$
Weighted Training Sets

• AdaBoost works by invoking the base learner many times on different weighted versions of the same training data set.
• Thus we assume our base learner takes as input a weighted training set, rather than just a set of training examples.

Learn:

Input:
- \(S \) - Set of \(N \) labeled training instances.
- \(D \) - A set of weights over \(S \), where \(D(i) \) is the weight of the \(i^{th} \) training instance (interpreted as the probability of observing \(i^{th} \) instance), and \(\sum_{i=1}^{N} D(i) = 1 \). \(D \) is also called distribution of \(S \).

Output:
- \(h \) - hypothesis from hypothesis space \(H \) with low weighted error.
Definition: Weighted Error

- Denote the *i*’th training instance by \(<x_i, y_i>\).
- For a training set \(S\) and distribution \(D\) the weighed training error is the sum of the weights of incorrect examples

\[
error(h, S, D) = \sum_{i=1}^{N} D(i) \cdot [h(x_i) \neq y_i]
\]

- The goal of the base learner is to find a hypothesis with a ‘small’ weighted error.
- Thus \(D(i)\) can be viewed as indicating to *Learn* the importance of learning the *i*’th training instance.
Weighted Error

- Adaboost calls \textit{Learn} with a set of prespecified weights
- It is often straightforward to convert a base learner \textit{Learn} to take into account the weights in D.

 Decision trees?

 K Nearest Neighbor?

 Naïve Bayes?

- When it is not straightforward we can resample the training data S according to D and then feed the new data set into the learner.
AdaBoost algorithm:

Input: \(S \) - Set of \(N \) labeled training instances.

Output: \(H(x) = \text{sign} \left[\sum_{t=1}^{M} \alpha_{m} \cdot h_{m}(x) \right] \)

Initialize \(D_{1}(i) = 1/N, \) for all \(i \) from 1 to \(N \). (uniform distribution)

FOR \(t = 1, 2, \ldots, M \) **DO**

\(h_{t} = \text{Learn}(S, D_{t}) \)

\(\varepsilon_{t} = \text{error}(h_{t}, S, D_{t}) \)

\[\alpha_{t} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \right) \]

FOR \(i \) from 1 to \(N \) **DO**

\[D_{t+1}(i) = D_{t}(i) \times \begin{cases} e^{\alpha_{t}}, & h_{t}(x_{i}) \neq y_{t} \\ e^{-\alpha_{t}}, & h_{t}(x_{i}) = y_{t} \end{cases} \]

Normalize \(D_{t+1} \); can show that \(h_{t} \) has 0.5 error on \(D_{t+1} \)

Note that \(\varepsilon_{t} < 0.5 \) implies \(\alpha_{t} > 0 \) so weight is decreased for instances \(h_{t} \) predicts correctly and increases for incorrect instances.
AdaBoost using Decision Stump (Depth-1 decision tree)

Original Training set: Equal Weights to all training samples

D_1

$\varepsilon_1=0.30$
$\alpha_1=0.42$

Taken from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
AdaBoost(Example)

ROUND 1

\[h_1 \]

\[\epsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[D_2 \]
AdaBoost (Example)

ROUND 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]

\(D_3 \)
AdaBoost (Example)

ROUND 3

h_3

$\varepsilon_3 = 0.14$
$\alpha_3 = 0.92$
AdaBoost(Example)

\[H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92) \]
Boosting Decision Stumps

Decision stumps: very simple rules of thumb that test condition on a single attribute.

Among the most commonly used base classifiers – truly weak!

Boosting with decision stumps has been shown to achieve better performance compared to unbounded decision trees.
Boosting Performance

- Comparing C4.5, boosting decision stumps, boosting C4.5 using 27 UCI data set
 - C4.5 is a popular decision tree learner
Boosting vs Bagging of Decision Trees
Overfitting?

- Boosting drives training error to zero, will it overfit?
- Curious phenomenon

- Boosting is often robust to overfitting (not always)
- Test error continues to decrease even after training error goes to zero
Explanation with Margins

\[f(x) = \sum_{l=1}^{L} w_l \cdot h_l(x) \]

Margin = \(y \cdot f(x) \)

Histogram of functional margin for ensemble just after achieving zero training error
Effect of Boosting: Maximizing Margin

Even after zero training error the margin of examples increases. This is one reason that the generalization error may continue decreasing.
Bias/variance analysis of Boosting

- In the early iterations, boosting is primarily a bias-reducing method.
- In later iterations, it appears to be primarily a variance-reducing method.
What you need to know about ensemble methods?

- **Bagging**: a randomized algorithm based on bootstrapping
 - What is bootstrapping
 - Variance reduction
 - What learning algorithms will be good for bagging? - high variance, low bias ones such as un-pruned decision trees

- **Boosting**:
 - Combine weak classifiers (i.e., slightly better than random)
 - Training using the same data set but different weights
 - How to update weights?
 - How to incorporate weights in learning (DT, KNN, Naïve Bayes)
 - One explanation for not overfitting: maximizing the margin