Brief review from last time

Minimum Code Length

- \(L_c = E[l(x)] \)
- Optimal if \(L_c^* \) is as short as possible
- \(L_c \geq \frac{H(X)}{\log_2 D} \)

Outline

- Fano code
- Shannon code
- Huffman code

Fano code

- Put the probabilities in decreasing order
- Split as close to 50-50 as possible. Repeat with each half.
\[
\begin{array}{cccc}
\text{a} & 0.20 & 0 & 0 \\
\text{b} & 0.19 & 1 & 0 \\
\text{c} & 0.17 & 1 & \\
\text{d} & 0.15 & 0 & 100 \\
\text{e} & 0.14 & 0 & 1 \\
\text{f} & 0.06 & 1 & 110 \\
\text{g} & 0.05 & 1 & 1110 \\
\text{h} & 0.04 & 1 & 1111 \\
\end{array}
\]

Computing the expected value:
\[
L_c = \sum x p(x) l(x) = (.2) \times 2 + (.19) \times 3 + (.17) \times 3 + (.15) \times 3 + (.14) \times 3 + (.06) \times 3 + (.05) \times 4 + (.04) \times 4 = 2.89 \text{ bits} > 2.81 \text{ bits},
\]
which was the lower bound.

Conditions for optimal prefix code (assuming binary)

An optimal prefix must satisfy:

- \(p(x_i) > p(x_j) \rightarrow l(x_i) \leq l(x_j) \) Otherwise, since \(E[\sum_i p(x_i) l(x_i)] = L_c \), we would produce a smaller sum by swapping the two.

- The two longest codewords must have the same length Follows from the tree structure. Otherwise, we can chop a bit off a codeword.

- In the tree corresponding to the optimal code, there must be two branches stemming from each intermediate node. Otherwise we would have free “parasyte” slots, filling up which would produce a code of shorter length.

Huffman code construction

1. Take the two smallest \(p(x_i) \) and assign each a different last bit. Then merge into a single symbol with summed probability.

2. Repeat step 1, until only one symbol remains.
Note that this assignment is not unique.

Huffman optimality proof

Proof. As mentioned before, an optimal code must satisfy \(p(x_i) > p(x_j) \rightarrow l(x_i) \leq l(x_j) \).

We prove by contradiction. Suppose \(\exists m > 2 \), s. t. \(c_m \) is the first sub-optimal code. (The case for \(m = 2 \) is trivial). Then \(\exists c'_m \), s. t. \(c'_m \) is optimal and \(L_{c'_m} < L_{c_m} \). Now let’s take \(c'_m \) and look at the two longest codewords, i.e. the two codewords with the lowest probabilities. Then merge them according to the Huffman recipe to create a new code \(c'_{m-1} \).

\[
L_{c'_{m-1}} = L_{c'_m} - (p_i + p_j) \times 1, \tag{1}
\]

where \(i \) and \(j \) are the two codewords with the longest length.

\[
L_{c_{m-1}} = L_{c_m} - (p_i + p_j) \tag{2}
\]

Combining (1) and (2) with the original assumption that \(L_{c'_m} < L_{c_m} \), we get \(L_{c'_{m-1}} < L_{c_{m-1}} \), which is a contradiction, since \(c_m \) was assumed to be the first suboptimal code.

Optimal codes (non-integer length)

Minimize \(\sum_i p(x_i)l(x_i) \)

subject to: \(\sum_i D^{-l(x_i)} \leq 1 \)

Use Lagrange multiplier method.
refresher on Lagrange (simplest form):
\[
\begin{align*}
\min f(x) \\
\text{s.t. } g(x) \leq 0 \\
f(x) + \lambda g(x)
\end{align*}
\]

\[
L(l(x), \lambda) = \sum p(x_i) l(x_i) + \lambda(\sum D^{-l(x_i)} - 1). \quad \text{Taking the derivative with respect to } l(x_i):
\]

\[
\frac{dL}{dl(x_i)} = p(x_i^*) - \lambda D^{-l(x_i)} = 0, \quad \text{in case of optimality.}
\]

\[
p(x_i) = \lambda D^{-l(x_i)} \sum p(x_i) = \lambda \sum D^{-l(x_i)} 1 = \lambda \sum D^{-l(x_i)} \lambda = \frac{1}{\sum D^{-l(x_i)}} = 1
\]

Therefore: \(l(x_i) = -\log_D \frac{p(x_i)}{\lambda} = -\log_D p(x_i).\)

Shannon code

- Round up optimal code lengths: \(l_i = \lceil -\log_D p(x_i) \rceil \leq -\log_D p(x_i) + 1\)
- \(l_i\) satisfy the Kraft Inequality \(\rightarrow\) Prefix code exists. Construction for such code is done earlier.
- Average length: \(\frac{H(X)}{\log D} \leq L_S \leq \frac{H(X)}{\log D} + 1.\)

Proof. Average length:

\[-\log_D p(x_i) \leq l_i = \lceil -\log_D p(x_i) \rceil \leq -\log_D p(x_i) + 1. \text{ Summing over both sides:} \]

\[\frac{H(X)}{\log D} \leq L_S \leq \frac{H(X)}{\log D} + 1.\]

So optimal code also must satisfy the bounds.

Existence of the prefix code:

Let’s take a look at \(\sum_{x_i} D^{-l(x_i)} = \sum_{x_i} D^{\lceil -\log_D p(x_i) \rceil} \leq \sum_{x_i} D^{-\log_D p(x_i)} \leq 1.\) Therefore prefix code must exist and here’s the construction for it: \(c_k = \sum_{i=1}^{k-1} p(x_i), \) for which all codes are different to \(l_i\) places.

Shannon code examples:

- good example
\[
\begin{array}{|c|c|c|c|}
\hline
x_1 & x_2 & x_3 & x_4 \\
\hline
p(x_i) & 1/2 & 1/4 & 1/8 \\
\hline
\end{array}
\]

\[-\log_2 p(x) = [1; 2; 3; 3] \text{ and } \lceil -\log_2 p(x) \rceil = [1; 2; 3; 3]. \text{ Therefore } L_S = 1.75 \text{ bits, which is exactly equal to } H(X), \text{ therefore for this example the code is optimal.}\]

• bad example

\[
\begin{array}{|c|c|}
\hline
x_1 & x_2 \\
\hline
p(x_i) & 0.99 & 0.01 \\
\hline
\end{array}
\]

\[-\log_2 p(x) = [0.0145; 6.64] \text{ and } \lceil -\log_2 p(x) \rceil = [1; 7]. \text{ Therefore } L_S = 1.06 \text{ bits, whereas } H(X) = 0.08 \text{ bits, so Shannon code does two orders of magnitude worse than the optimal.}\]