1. In the Sallen-Key filter shown, \(R_1 = 25 \) kohms and \(C_2 = 50 \) pF. Choose \(R_2 \) to maximize the pole \(Q \), and \(C_1 \) to achieve \(Q_{\max} = 4 \).

![Sallen-Key Filter Diagram]

2. For the \(G_m-C \) filter shown, find
 a. the condition for zeros located on the imaginary axis in the s plane;
 b. the pole frequency and pole \(Q \).

![Gm-C Filter Diagram]

3. Find all transfer functions \(V_{\text{out}}/I_k, k = 1, 2, 3, 4 \) for the circuit shown. All impedances are equal to \(Z \).
 (Hint: use interreciprocity, and analyze the adjoint network from the left!)

![Transfer Function Diagram]