Trees
Introduction and Applications
Goals

• Tree Terminology and Definitions
• Tree Representation
• Tree Application
Trees

• Ubiquitous – they are everywhere in CS

• Probably ranks third among the most used data structure:
 1. Arrays/Vectors
 2. Lists
 3. Trees
Tree Characteristics

- A tree consists of a collection of nodes connected by directed arcs.
- A tree has a single *root* node.
 - By convention, the root node is usually drawn at the top.
- A node that points to (one or more) other nodes is the *parent* of those nodes while the nodes pointed to are the *children*.
- Every node (except the root) has exactly one parent.
- Nodes with no children are *leaf* nodes.
- Nodes with children are *interior* nodes.
Tree Characteristics (cont...)

• Nodes that have the same parent are siblings

• The descendants of a node consist of its children, and their children, and so on
 – All nodes in a tree are descendants of the root node (except, of course, the root node itself)

• Any node can be considered the root of a subtree

• A subtree rooted at a node consists of that node and all of its descendants
• There is a single, unique path from the root to any node
 – Arcs don’t join together
• A path’s *length* is equal to the number of arcs traversed
• A node’s *height* is equal to the maximum path length from that node to a leaf node:
 – A leaf node has a height of 0
 – The height of a tree is equal to the height of the root
• A node’s *depth* is equal to the path length from the root to that node:
 – The root node has a depth of 0
 – A tree’s depth is the maximum depth of all its leaf nodes (*which, of course, is equal to the tree’s height*)
Tree Characteristics (cont.)
Nodes D and E are children of node B

Node B is the parent of nodes D and E

Nodes B, D, and E are descendents of node A (as are all other nodes in the tree...except A)

E is an interior node

F is a leaf node
Tree Characteristics (cont.)

Are these trees?

Yes

No

No
Full Binary Tree

• Binary Tree
 – Nodes have no more than two children
 – Children are generally referred to as “left” and “right”

• Full Binary Tree:
 – every leaf is at the same depth
 – Every internal node has 2 children
 – Height of h will have $2^{h+1} - 1$ nodes
 – Height of h will have 2^h leaves
• **Complete Binary Tree:**

 full except for the bottom level which is filled from left to right
Complete Binary Tree

- Is this a complete binary tree?

- MUCH more on these later!
Like the `Link` structure in a linked list: we will use this structure in several data structures.
Binary Tree Application: Animal Game

• Purpose: guess an animal using a sequence of questions
 – Internal nodes contain yes/no questions
 – Leaf nodes are animals

• How do we build it?
Initially, tree contains a single animal (e.g., a “cat”) stored in the root node

Guessing....

1. Start at root.

2. If internal node \(\rightarrow\) ask yes/no question
 - Yes \(\rightarrow\) go to left child and repeat step 2
 - No \(\rightarrow\) go to right child and repeat step 2

3. If leaf node \(\rightarrow\) guess “I know. Is it a ...”:
 - If right \(\rightarrow\) done
 - If wrong \(\rightarrow\) “learn” new animal by **asking** for a yes/no question that distinguishes the new animal from the guess
Binary Tree Application: Animal Game

- **Cat**
 - **Swim?**
 - Yes: **Fish**
 - No: **Cat**
 - **Fly?**
 - Yes: **Bird**
 - No: **Cat**
• If you can ask at most q questions, the number of possible answers we can distinguish between, n, is the number of leaves in a binary tree with height at most q, which is at most 2^q.

• Taking logs on both sides: $\log(n) = \log(2^q)$

• $\log(n) = q$: for n outcomes, we need q questions

• *For 1,048,576 outcomes we need 20 questions*
Still To Come...

- Implementation Concepts
- Implementation Code