Surface Integral

For a scalar function \(f \) over a surface parameterized by \(u \) and \(v \), the surface integral is given by

\[
\Phi = \int_S f \, da \tag{1.1}
\]

\[
= \int_S f(u,v)|T_u \times T_v| \, du \, dv \tag{1.2}
\]

where \(T_u \) and \(T_v \) are tangent vectors and \(a \times b \) is the cross product.

For a vector function over a surface, the surface integral is given by

\[
\Phi = \int_S \mathbf{F} \cdot da \tag{1.3}
\]

\[
= \int_S \mathbf{F} \cdot \mathbf{n} \, da \tag{1.4}
\]

\[
= \int_S f_x \, dy \, dz + f_y \, dz \, dx + f_z \, dx \, dy \tag{1.5}
\]

where \(\mathbf{a} \cdot \mathbf{b} \) is a dot product and \(\mathbf{n} \) is a unit normal vector. If \(z = f(x,y) \), the \(da \) is given explicitly by

\[
da = \pm \left(-\frac{\partial z}{\partial x} \mathbf{x} - \frac{\partial z}{\partial y} \mathbf{y} + \mathbf{z} \right) \, dx \, dy \tag{1.6}
\]

If the surface is surface parameterized using \(u \) and \(v \), then

\[
\Phi = \int_S \mathbf{F} \cdot (T_u \times T_v) \, du \, dv. \tag{1.7}
\]
Maxwell’s Equations

Integral form

\[\oint_{\partial \Omega} E \cdot dS = \frac{1}{\epsilon_0} \iiint_{\Omega} \rho \, dV \tag{2.1} \]
\[\oint_{\partial \Omega} B \cdot dS = 0 \tag{2.2} \]
\[\oint_{\partial \Sigma} E \cdot d\ell = -\frac{d}{dt} \iint_{\Sigma} B \cdot dS \tag{2.3} \]
\[\oint_{\partial \Sigma} B \cdot d\ell = \mu_0 \iint_{\Sigma} \left(J + \epsilon_0 \frac{\partial E}{\partial t} \right) \cdot dS \tag{2.4} \]

Differential form

\[\nabla \cdot E = \frac{\rho}{\epsilon_0} \tag{2.5} \]
\[\nabla \cdot B = 0 \tag{2.6} \]
\[\nabla \times E = -\frac{\partial B}{\partial t} \tag{2.7} \]
\[\nabla \times B = \mu_0 \left(J + \epsilon_0 \frac{\partial E}{\partial t} \right) \tag{2.8} \]
Grading Policies

1. All projects must be submitted electronically by 23:59:59 on the due date via TEACH – use “Check time on server” if unsure about your clock. TEACH time takes priority over your local computer.

2. Only a single late homework assignment allowed. Only allowed up to 7 calendar days late.

3. Submit late homework to your assigned TA via email.

4. Blatant disrespect to or by the TAs will not be tolerated.

5. If you do not demo your project, you do not receive credit for it.

6. When you make an appointment to demo, show up. Failure to show up will result in a grade penalty. Repeated offenses will result in no credit for the assignment.

7. If your project does not compile, for any reason, no credit will be given.

8. Compilation will be on os-class. This server is the final say on whether your code compiles.

9. No directories in your submissions. You will be penalized for including any sort of hierarchy.

10. All assignments submitted to TEACH. No late submissions will be accepted via TEACH.

11. Naming convention: CS311_proj{x}⟨engr_username⟩.tar.bz2. Fill in { } with appropriate values.

12. No zip files will be accepted. You must use bzipped tar files.

13. All non-code documents must be created with LaTeX, by hand. This will be discussed in class.

14. All work must be done individually unless specifically allowed to work in groups.

Learning Objectives

- Explain why multiprogramming is important for modern operating systems.
- Explain the general structure of a multiprogrammed operating system.
- Explain the purpose and operation of system calls.
- Write a program utilizing system calls.
- Write a program using a scripting language.
- Write a program that uses regular expressions to parse input data.
- Write a program that spawns processes and provides mutual exclusion for variables or other resources shared by the processes.
- Write a program that uses sockets to implement a client/server system.
- Explain how a common file system works, including structure, I/O operations, and security.
- Describe the memory organization of a typical process in a common operating system.