Classical Viewing

Viewing requires three basic elements

- One or more objects
- A viewer with a projection surface
- Projectors that go from the object(s) to the projection surface

Classical views are based on the relationship among these elements
Classical and Computer Viewing

Adapted From:
Ed Angel
Professor of Emeritus of Computer Science
University of New Mexico
Planar Geometric Projections

Standard projections project onto a plane
Projectors are lines that either
- converge at a center of projection
- are parallel
Such projections preserve lines
- but not necessarily angles
Nonplanar projections are needed for applications such as map construction
Classical Projections

- Front elevation
- Elevation oblique
- Plan oblique
- Isometric
- One-point perspective
- Three-point perspective
Taxonomy of Planar Projections

planar geometric projections

parallel
 - multiview
 - orthographic
 - axonometric
 - oblique
 - isometric
 - dimetric
 - trimetric

perspective
 - 1 point
 - 2 point
 - 3 point
Parallel Projection

Diagram showing an object, projector, and projection plane.
Orthographic Projection

Projectors are orthogonal to projection surface
Multiview Orthographic Projection

Projection plane parallel to principal face
Usually form front, top, side views

isometric (not multiview orthographic view)
Axonometric Projections

Object rotated along one or more principal axes

classify by how many angles of a corner of a projected cube are the same

none: trimetric
two: dimetric
three: isometric
Types of Axonometric Projections

- Dimetric
- Trimetric
- Isometric
Oblique Projection

Arbitrary relationship between projectors and projection plane
Example
Perspective Projection

Projectors converge at center of projection
Vanishing Points

Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*).

Drawing simple perspectives by hand uses these vanishing point(s).
Three-Point Perspective

No principal face parallel to projection plane
Three vanishing points for cube
Two-Point Perspective

On principal direction parallel to projection plane
Two vanishing points for cube
One-Point Perspective

One principal face parallel to projection plane
One vanishing point for cube
Computer Viewing

There are three aspects of the viewing process, all of which are implemented in the pipeline,

- Positioning the camera
 - Setting the model-view matrix

- Selecting a lens
 - Setting the projection matrix (ortho vs. persp)

- Clipping
 - Setting the view volume
The OpenGL Camera

In OpenGL, initially the object and camera frames are the same

Default model-view matrix is an identity

The camera is located at origin and points in the negative z direction

Default projection type is Orthographic

OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin

Default projection matrix is an identity
Default Projection

Default projection is orthogonal
The LookAt Function

The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface

Replaced by LookAt() in mat.h

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

3D position

3D Vector
LookAt

LookAt(eye, at, up)
OpenGL Orthogonal Viewing

Ortho(left, right, bottom, top, near, far)

near and far measured from camera
OpenGL Perspective

Frustum(left, right, bottom, top, near, far)

near and far are distances from cam and should always be positive!!!
Using Field of View

With Frustum it is often difficult to get the desired view.

Perspective (fovy, aspect, near, far) often provides a better interface.

\[\text{aspect} = \frac{w}{h} \]
In OpenGL the model-view matrix is used to
 Position the camera
 Build the scene

The projection matrix is used to define the view volume and to select a camera lens

Although these matrices are no longer part of the OpenGL state, you will create them in your application and pass them to shaders to be applied
3D_ViewingDemo