ASICs
Application Specific Integrated Circuit
ASICS - What are they?

- An ASIC is:
 - An Application Specific Integrated Circuit
 - An ASIC is an IC that is designed to perform a particular, specialized function
 - It is not software programmable, unless it’s a microcontroller
 - It is not a memory chip, but may contain memory
- Examples would include:
 - MPEG decoder
 - Audio processor for Dolby noise reduction
 - Image processor for MRI machine
- How are ASICS used?
 - Many popular electronic devices
 - High volume, cost sensitive
 - High reliability, high performance (mA/Mhz)
ASICS – Types of ASICS

- Full Custom ASIC
 - Transistors are sized, placed and connected one by one
 - Analog parts are done this way
 - Highest performance, longest design time
 - Hand optimized parts of high-end microprocessor
 - Full set of masks needed
ASICs – Types of ASICs

- Standard Cell ASIC
 - Predesigned (standard) cells in a library are used
 - These cells are connected together to form the design
 - Reasonable performance, much shorter design time than full custom
 - Most digital ASICs are designed this way
 - Usually uses HDLs with logic synthesis (verilog, VHDL)
 - Full set of masks needed
ASICs – Types of ASICs

• Gate Array ASIC
 • Predrawn transistors are on a die
 • These transistors can be connected together in any fashion to form cells
 • The cells are connected to form a design
 • Usually digital in nature
 • Lower performance, but very quick to fabricate
 • Only metallization masks are needed
 • Usually uses HDLs with logic synthesis
ASICs – Types of ASICs

- FPGA
 - Fully predesigned silicon, logic functions and interconnects
 - Programmed with a “bit file” to configure logic and interconnects
 - Medium performance, higher power consumption and price
 - Very quick to implement, programmable in minutes
 - Better for more limited volume applications
 - Almost always uses HDLs (verilog, VHDL) plus logic synthesis
 - No DFT structures required
 - Popular for ASIC prototyping

Altera Stratix V GT $12,995

Lattice iCE40 $1.65
ASICs – Considerations

- Time to market
 - Time to market is a primary driver
 - Dramatic increase in profit with shorter times
 - Cutting one month off the schedule can increase profits by as much as 10%
ASICS – Considerations

- Cost
 - Standard cell synthesis can cost $125,000 per license
 - Typical standard cell NRE $50,000 to $200,000
 - If you can’t spend at least 1 million, you are not in the game
 - One bug in a standard cell design can be a disaster
 - A standard cell “re-spin” can take 8 weeks or more can cost a lot of money
 - Really cheap tools are available for FPGA design, with some even free!
 - FPGAs cost anywhere from $2-25,000 each in single quantity
 - FPGA bugs can be fixed at zero cost and in minutes

<table>
<thead>
<tr>
<th>Process (nm)</th>
<th>VDD (v)</th>
<th>Metal Layers</th>
<th>Mask Set Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>1.0</td>
<td>9</td>
<td>3,000,000</td>
</tr>
<tr>
<td>90</td>
<td>1.0</td>
<td>9</td>
<td>1,500,000</td>
</tr>
<tr>
<td>130</td>
<td>1.2</td>
<td>7</td>
<td>750,000</td>
</tr>
<tr>
<td>350</td>
<td>3.3</td>
<td>3</td>
<td>40,000</td>
</tr>
</tbody>
</table>

(from 2006)
ASICS – How do you choose?

• 1 – Technical feasibility
 • Can it run fast enough?
 • Is it low enough power?
 • Can it operate at the intended supply voltage?
 • Is the required IP available?

• 2 – Financial Analysis
 • What is the cost to get first prototypes (NRE)
 • What is the price per chip at reasonably high volume?
 • How many will we ship?

• FPGAs generally better choice for low volume production (<10,000 units)
• ASICS will pan out if the chip is planned to sell at high volume (>100,000 units)
ASICs – Example
UBR Block Diagram

Note Title

ASICS – Example

November 5, 2013
ASICs – Example

Counter State Machine

Mealy or Moore?
ASICs – Example

Counter State Machine

Moore: output values defined by current state only
module counter_sm (
 input clk,
 input reset_n,
 output reg restart,
 output reg restart_mem,
 input in
);

// state encoding outputs | present state
// restart, restart_mem | ps[3:0]
enum reg [4:0]{
 INIT = 5'b00_000,
 IN_FOUND = 5'b11_001,
 RESET_DONE = 5'b01_010,
 WAIT_2 = 5'b01_011,
 WAIT_3 = 5'b01_100,
 ALL_DONE = 5'b00_110,
 GO_TO_INIT = 5'b00_111,
 X = 5'bxx_xxx
} counter_ps, counter_ns;

reg sync;

// advance state machine every clock cycle
always_ff @(posedge clk, negedge reset_n)
begin
 if(~reset_n)
 counter_ps <= INIT;
 else
 counter_ps <= counter_ns;
end

// sync up the sensor input with an extra flip flop
always_ff @(posedge clk, negedge reset_n)
begin
 if(~reset_n)
 sync <= 1'b0;
 else
 sync <= in ;
end

// counter state machine logic
always_comb
begin
 counter_ns = X;
 case (counter_ps)
 INIT: if (sync) counter_ns = IN_FOUND;
 else counter_ns = INIT;
 IN_FOUND: counter_ns = RESET_DONE;
 RESET_DONE: counter_ns = WAIT_2;
 WAIT_2: counter_ns = WAIT_3;
 WAIT_3: counter_ns = ALL_DONE;
 ALL_DONE: if (~sync) counter_ns = GO_TO_INIT;
 else counter_ns = ALL_DONE;
 GO_TO_INIT: counter_ns = INIT;
 endcase
end

counter, restart_mem = counter_ps[4:3];
end
endmodule
Verilog Code – Example

- Create Working Directory
 - Put all your .v or .sv files in a single directory then enter the following in the terminal:
 - vlib work
- Compiling Verilog
 - Once your code is ready to compile use the command:
 - vlog yourcode.sv
- Simulating with Modelsim
 - To launch Modelsim to simulate (you can also use it to compile) type:
 - vsim
- Synthesis with Design Vision
 - To launch Design Vision for synthesis (to see the gate level schematic) type in terminal:
 - design_vision-xg
Why do ECE’s get Halloween and Christmas mixed up?
Enjoy

Why do ECE's get Halloween and Christmas mixed up?

Because 31oct = 25dec