Unsupervised Learning: Model Selection and Evaluation

CS-534
Selecting k: A Model Selection Problem

• Each choice of k corresponds to a different statistical model for the data

• Model selection searches for a model (a choice of k) that gives us the best fit of the training data
 – Penalty method
 – Cross-validation method
 – Model selection methods can also be used to make other model decisions such as choosing among different ways of constraining Σ
Selecting k: heuristic approaches

- For kmeans, plot the sum of squared error for different k values
 - SSE will monotonically decrease as we increase k
 - The knee points on the curve suggest good candidates for k
Penalty Method: Bayesian Information Criterion

- Based on Bayesian Model Selection
 - Determine the range of k values to consider $1 \leq k \leq K_{max}$
 - Apply EM to learn a maximum likelihood fitting of the Gaussian mixture model for each possible value of k
 - Choose k that maximizes BIC
 \[
 2l_M(x, \hat{\theta}) - m_M \log(n) \equiv \text{BIC}
 \]
 - Given two estimated models, the model with higher BIC is preferred
 - Larger k increases the likelihood, but will also cause the second term to increase
 - Often observed to be biased toward less complex model
 - Similar method: $\text{AIC} = 2l_m - 2m_M$, which penalize complex model less severely

\[\begin{array}{ll}
\text{Loglikelihood of the resulting Gaussian Mixture Model} & \# \text{ of parameters to be estimated in } M \\
\end{array}\]
Cross-validation Likelihood
(Smyth 1998)

• The likelihood of the training data will always increase as we increase k
 – more clusters, more flexibility leads to better fitting of the data

• Use cross-validation
 – For each fold, learn the GMM model using the training data
 – Compute the log-likelihood of the learned model on the remaining fold as test data
Stability based method (optional)

• Stability: repeatedly produce similar clusterings on data originating from the same source.

• High level of agreement among a set of clusterings \Rightarrow the clustering model (k) is appropriate for the data

• Evaluate multiple models, and select the model resulting in the highest level of stability.
Assessing Stability (Optional)

• Based on resampling (Levine & Domany, 2001)
 • For each k
 1. Generate clusterings on random samplings of the original data
 2. Compute pairwise similarity between each pair of clusterings
 3. Stability(k) = mean pairwise similarity.
 • Select k that maximize stability

• Based on prediction accuracy (Tibshirani et al., 2001)
 • For each k
 1. Randomly split data into training and testing
 2. For each split
 • cluster the training data using k
 • Predict assignment for test set and compare it to the clustering result on test set
 3. Stability(k) = mean Prediction strength
 • Select k that maximize stability
How to Evaluate Clustering?

• By user interpretation
 – does a document cluster seem to correspond to a specific topic?
• Internal criterion – a good clustering will produce high quality clusters:
 – high intra-cluster similarity
 – low inter-cluster similarity
 – The measured quality of a clustering depends on both the object representation and the similarity measure used
External indexes

If true class labels (*ground truth*) are known, the validity of a clustering can be verified by comparing the class labels and clustering labels.

\[
\begin{array}{cccc}
\cdots & \cdots & \cdots & \cdots \\
N & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

\[
\begin{array}{cccc}
\n & \n & \n & \n \\
\cdots & \cdots & \cdots & \cdots \\
\n_{11} & n_{12} & \cdots & n_{1l} \\
\n_{21} & n_{22} & \cdots & n_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
\n_{k1} & n_{k2} & \cdots & n_{kl} \\
\n_{1} & n_{2} & \cdots & n_{l} \\
\end{array}
\]

\[n_{ij} = \text{number of objects in class } i \text{ and cluster } j\]
Rand Index and Normalized Rand Index

• Given partition (P) and ground truth (G), measure the number of vector pairs that are:

 a: in the same class both in P and G.

 b: in the same class in P, but different classes in G.

 c: in different classes in P, but in the same class in G.

 d: in different classes both in P and G.

\[
R = \frac{a + d}{a + b + c + d}
\]

• Adjusted rand index: corrected-for-chance version of rand index

 – Compare to the expectation of the index assuming a random partition of the same cluster sizes

\[
ARI = \frac{\text{Index} - \text{Expected}R}{\text{MaxIndex} - \text{Expected}R} = \frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_i \binom{n_i}{2} \sum_j \binom{n_j}{2} \right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_i \binom{n_i}{2} + \sum_j \binom{n_j}{2} \right] - \left[\sum_i \binom{n_i}{2} \sum_j \binom{n_j}{2} \right] / \binom{n}{2}}
\]
Purity and Normalized Mutual Information

• Purity

![Diagram of clusters with purity calculation](image)

Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: \(\times, 5 \) (cluster 1); \(\circ, 4 \) (cluster 2); and \(\circ, 3 \) (cluster 3). Purity is \(\frac{1}{17} \times (5 + 4 + 3) \approx 0.71 \).

• Normalized Mutual Information

\[
I(Class, Clust) = H(Class) - H(Class|Clust)
\]

\[
NMI = \frac{2I(Class, Clust)}{H(Clust) + H(Class)}
\]
References

