ECE 111
Introduction to ECE: Tools
Tuesday & Thursday, 1500-1550, Gilbert 224

Instructor: Matthew Shuman
Email: shuman@eecs.oregonstate.edu
Website: www.engr.oregonstate.edu/~shuman (Don’t copy and paste the ~.)
Office Location: KEC 1115
Office Hours: Listed on my OSU Website
Office Phone: (541) 737-1072

This statement is the original plan of the course. Plans can change through the course of the term, and changes will be sent out to the class email list. Check your ENGR email account daily.

Course Description: ECE 111 is an introduction to tools available at OSU and EECS. This class will also give students enough exposure to ECE that they will know what they will be learning during their education at OSU and what opportunities will be available to them once they finish their degree at OSU. The projects produced by engineers have a large impact on the people, economy, and environment of the world, and this class shows the explores the possibilities that the ECE program provides.

Prerequisite(s): None.

Course Objectives:
At the completion of this course, students will be able to:

1. Apply basic engineering methodology to solve problems (ABET Outcomes: A, k, o)
2. Design and implement a solution to a student-defined problem in the context of engineering design (ABET Outcomes: a, b, c, e, k, o, q)
3. Explain the history of electrical and computer engineering, and other engineering majors, as it relates to the societal impacts of innovations and design choices (ABET Outcomes: d, f, H, I, j)
4. Utilize a microcontroller to implement an engineering design (ABET Outcomes: a, c, e, K, m, o, q)
5. Identify at least one company that hires engineers in the student’s specific sub-discipline of interest (ABET Outcomes: f, h, j)
6. Identify tools and techniques that will assist them to succeed better in their engineering education (ABET Outcomes: a, i, K, l)
Grade Distribution:

<table>
<thead>
<tr>
<th>Grade Distribution</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>40%</td>
</tr>
<tr>
<td>Lecture Assignments</td>
<td>40%</td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>10%</td>
</tr>
<tr>
<td>Final Report</td>
<td>10%</td>
</tr>
</tbody>
</table>

Letter Grade Distribution:

- >= 92.50 A 72.50 - 76.50 C
- 89.50 - 92.50 A- 69.50 - 72.50 C-
- 86.00 - 89.50 B+ 66.50 - 69.50 D+
- 82.50 - 86.50 B 62.50 - 66.50 D
- 79.50 - 82.50 B- 59.50 - 62.50 D-
- 76.50 - 79.50 C+ <= 59.50 F

Course grades can be curved up based on class attendance, participation in lecture or office hours, or helping others with posts on the lab forum. Grades will not be curved down, everyone can earn an A.

Course Policies:

- **General**
 - Laptops, phones, campus newspapers or other distractions are not to be used during lecture, for reasons stated in this article. Tablets or other flat laying computers will be allowed for note taking purposes in the first three rows of the lecture hall. Participate in class, take notes, engage in your learning and the lecture minutes will go by quickly.
 - You are responsible for preparing for each lecture and reviewing your notes after each lecture. It’s your responsibility to contact a classmate to get notes if you miss a lecture.
 - Use the lecture time efficiently.

- **Grades**
 - Grades in the C range represent performance that meets expectations; Grades in the B range represent performance that is substantially better than the expectations; Grades in the A range represent work that is excellent. You are not entitled to an A, but preparation, hard work, and maturity can help you earn a good grade in this course.
 - Grades will be maintained in the Blackboard. Students are responsible for tracking their progress by referring to the online gradebook. Grading concerns should be brought to the instructors attention within a week of the grade being posted onto Blackboard.

- **Labs and Assignments**
 - Students are expected to work independently, unless specified to submit work in groups. Cheating, fabrication, assisting, tampering, and plagiarism are all forms of academic dishonesty and will be penalized according to the Student Conduct and Community Standards. Here is the process for dealing with academic dishonesty, and here are the forms. Discussion amongst students is encouraged, but when in doubt, direct your questions to the professor, tutor, or lab assistant.
– No late assignments will be accepted under any circumstances. Homework assignments can be submitted several days before the due date, but assignments submitted through TEACH will not be accepted even one second late. Assignments can be submitted multiple times, and old assignments will automatically be renamed with a .old extension within TEACH. Only the most recent submission will be graded.

• Attendance and Absences

 – Attendance is required. Attendance will not be taken, but you are responsible for all content discussed in lecture. Extra credit opportunities and in class assignments might be held during lecture without prior announcement.

 – Students are responsible for all missed work, regardless of the reason for absence. It is also the absentee’s responsibility to get all missing notes or materials.