Priority Queue ADT & Heaps
Goals

• Introduce the Priority Queue ADT
• Heap Data Structure Concepts
Priority Queue ADT

• Not really a FIFO queue – misnomer!!

• Associates a “priority” with each element in the collection:
 – First element has the highest priority (typically, lowest value)

• Applications of priority queues:
 – To do list with priorities
 – Graph Searching
 – Active processes in an OS
Priority Queue ADT: **Interface**

- Next element returned has highest priority

```c
void add();
TYPE getMin();
void removeMin();
```
Heap: has 2 completely different meanings

1. Classic data structure used to implement priority queues
2. Memory space used for dynamic allocation

We will study the data structure (not dynamic memory allocation)
Binary Heap data structure: a complete binary tree in which every node’s value is less than or equal to the values of its children (min heap)

Review: a complete binary tree is a tree in which

1. Every node has at most two children (binary)
2. The tree is entirely filled except for the bottom level which is filled from left to right (complete)
 - Longest path is ceiling(log n) for n nodes
Min-Heap: Example

Root = Smallest element

Last filled position (not necessarily the last element added)

Next open spot
Maintaining the Heap: Addition

Add element: 4

Place new element in next available position, then fix it by “percolating up”
Maintaining the Heap: Addition (cont.)

Percolating up:
while new value is less than parent,
swap value with parent

After first iteration (swapped with 7)

After second iteration (swapped with 5)
New value not less than parent \(\rightarrow\) Done
Maintaining the Heap: Removal

- Since each node’s value is less than or equal to the values of its children, the root is always the smallest element.

- Thus, the operations `getMin` and `removeMin` access and remove the root node, respectively.

- Heap removal (`removeMin`):

 What do we replace the root node with?

 Hint: How do we maintain the completeness of the tree?
Maintaining the Heap: Removal

Heap removal (*removeMin*):

1. Replace root with the element in the last filled position
2. Fix heap by “percolating down”
removeMin:
1. Move element in last filled pos into root
2. Percolate down

Root = Smallest element

Last filled position
Maintaining the Heap: Removal (cont.)

Percolating down:
while greater than smallest child
swap with smallest child

Root value removed
(16 copied to root and last node removed)

After first iteration (swapped with 3)
Maintaining the Heap: Removal (cont.)

Percolating down: while greater than smallest child swap with smallest child

After second iteration (moved 9 up)

Percolating down: while greater than smallest child swap with smallest child

After third iteration (moved 12 up) Reached leaf node \(\rightarrow\) Stop percolating
Maintaining the Heap: Removal (cont.)

Root = New smallest element

New last filled position
Insert the following numbers into a min-heap in the order given: 54, 13, 32, 42, 52, 12, 6, 28, 73, 36
Remove the minimum value from the min-heap
Your Turn

• Complete Worksheet: Heaps Practice
Heap Implementation
Goals

• Heap Representation
• Heap Priority Queue ADT Implementation
Dynamic Array Representation

Complete binary tree has structure that is efficiently represented with an array (or dynamic array)

- Children of node \(i \) are stored at \(2i + 1 \) and \(2i + 2 \)
- Parent of node \(i \) is at \(\text{floor}((i - 1) / 2) \)

Why is this a bad idea if tree is not complete?
If the tree is not complete (it is thin, unbalanced, etc.), the `DynArr` implementation will be full of holes.
Heap Implementation: \texttt{add}

- Things to consider
 - Where does the new value get placed to maintain completeness?
 - How do we guarantee the heap order property?
 - How do we compute a parent index?
 - When do we ‘stop’

- Complete Worksheet #33 – \texttt{addHeap()}
void addHeap (struct dyArray * heap, TYPE newValue) {

}
void removeMinHeap(DynArr *heap){
 int last;
 last = sizeDynArr(heap) - 1;
 putDynArr(heap, 0, getDynArr(heap, last)); /* Copy the last element to the first */
 removeAtDynArr(heap, last); /* Remove last element. */
 _adjustHeap(heap, last , 0); /* Rebuild heap */
}

Percolates down from Index 0 to last (not including last...which is one beyond the end now!)
Heap Implementation: removeMin

```
2
  / \
3   4
  / \ /
9   10 5
  / \ /  /
14 12 11 8
    /  /  /
   16 7 14
```

last

```
2 3 4 9 10 5 8 14 12 11 16
```

7

Heap Implementation: \texttt{removeMin} (cont.)

```c
    last = sizeDynArr(heap) - 1;
    putDynArr(heap, 0, getDynArr(heap, last));
    /* Copy the last element to the first */
    removeAtDynArr(heap, last);
    _adjustHeap(heap, last, 0);
```

Diagram:
- **New root**: The new root is 7.
- **Last element**: The last element is 11.
- **Heap Structure**: The heap structure is shown with nodes 3, 4, 9, 10, 5, 8, 14, 12, 11, 16, and 7.
Heap Implementation: _adjustHeap

_adjustHeap(heap, upTo, start);
_adjustHeap(heap, last, 0);

Smallest child (min = 3)
Heap Implementation: _adjustHeap

_adjustHeap(heap, last, 1);
Heap Implementation: _adjustHeap

current is less than smallest child so _adjustHeap exits and removeMin exits

smallest child

last
void _adjustHeap(struct DynArr *heap, int max, int pos) {
 int leftIdx = pos * 2 + 1;
 int rightIdx = pos * 2 + 2;

 if (rightIdx < max) {
 /* Have two children */
 /* Get index of smallest child (_minIdx). */
 /* Compare smallest child to pos. */
 /* If necessary, swap and call _adjustHeap(max, minIdx). */
 }
 else if (leftIdx < max) {
 /* Have only one child. */
 /* Compare child to parent. */
 /* If necessary, swap */
 }
 /* Else no children, we are at a leaf */
}
void swap(struct DynArr *arr, int i, int j) {
 /* Swap elements at indices i and j. */
 TYPE tmp = arr->data[i];
 arr->data[i] = arr->data[j];
 arr->data[j] = tmp;
}

int minIdx(struct DynArr *arr, int i, int j) {
 /* Return index of smallest element value. */
 if (compare(arr->data[i], arr->data[j]) == -1)
 return i;
 return j;
}
So, which is the best implementation of a priority queue?

(What if wrote a `getMin()` for AVLTree?)
Priority Queues: Performance Evaluation

• Recall that a priority queue’s main purpose is rapidly accessing and removing the smallest element!

• Consider a case where you will insert (and ultimately remove) n elements:

 —ReverseSortedVector and SortedList:

 Insertions: $n \cdot n = n^2$
 Removals: $n \cdot 1 = n$
 Total time: $n^2 + n = O(n^2)$

 —Heap:

 Insertions: $n \cdot \log n$
 Removals: $n \cdot \log n$
 Total time: $n \cdot \log n + n \cdot \log n = 2n \log n = O(n \log n)$

How do they compare in terms of space requirements?
Your Turn

- Complete Worksheet #33 - _adjustHeap(..)
BuildHeap and Heapsort
Goals

• Build a heap from an array of arbitrary values
• HeapSort algorithm
• Analysis of HeapSort
• How do we build a heap from an arbitrary array of values???
BuildHeap: Is this a proper heap?

Are any of the subtrees \textit{guaranteed} to be proper heaps?
BuildHeap: Leaves are proper heaps

Size = 11
Size/2 – 1 = 4

First non-leaf at floor(n/2) - 1
• How can we use this information to build a heap from a random array?
• _adjustHeap: takes a binary tree, rooted at a node, where all subtrees of that node are proper heaps and percolates down from that node to ensure that it is a proper heap

```c
void _adjustHeap(struct DynArr *heap, int max, int pos)
```

Adjust up to (not inclusive)
Adjust from
BuildHeap Algorithm

- Find the first non-leaf node, i, (going from bottom to top, right to left)
- adjust heap from it to max
- Decrement i and repeat until you process the root
Simulation: BuildHeap

Size = 6
i=Size/2 – 1 = 2

i=2
_adjustHeap(heap,6,2)
Simulation: BuildHeap

Size = 6
i=1

_adjjustHeap(heap,6,1)
Simulation: BuildHeap

Size = 6
i = 0

```java
i=0
_adjustHeap(heap,6,0)
```
i=-1
Done...with BuildHeapnow let’s sort it!
• BuildHeap and _adjustHeap are the keys to an **efficient, in-place**, sorting algorithm
 – in-place means that we don’t require any extra storage for the algorithm

• Any ideas???
 – Hint#1: adjust heap only goes up to max
 – Hint#2: we’ll produce a reverse sorted array
HeapSort

1. BuildHeap – turn arbitrary array into a heap

2. Swap first and last elements

3. Adjust Heap (from 0 to the last...not inclusive!)

4. Repeat 2-3 but decrement last each time through
i=5
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place

Iteration 1

\[
i = 5 \\
\text{Swap}(v, 0, i) \\
___\text{adjustHeap}(v, i, 0);
\]
i=4
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place

Iteration 2

i=4
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place

Iteration 3

i = 3
Swap(v, 0, i)
_adj_justHeap(v, i, 0);
i = 3
Swap(v, 0, i)
_adjustHeap(v, i, 0);
i=2
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place

Iteration 4

0 1 2 3 4 5
9 8 7 5 4 3

i=2
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place

Iteration 5

```
i = 1
Swap(v, 0, i)
_adjustHeap(v, i, 0);
```
i=1
Swap(v, 0, i)
_adjustHeap(v, i, 0);
HeapSort Simulation: Sort in Place
HeapSort Performance

• Build Heap:

n/2 calls to _adjustHeap = O(n log n)

• HeapSort:

n calls to swap and adjust = O(n log n)

• Total:

O(n log n)
Your Turn

• Worksheet 34 – BuildHeap and Heapsort