Trees
Introduction and Applications
Goals

• Tree Terminology and Definitions
• Tree Representation
• Tree Application
Examples of Trees
Trees

• Ubiquitous – they are everywhere in CS

• Probably ranks third among the most used data structure:
 1. Arrays/Vectors
 2. Linked Lists
 3. Trees
Tree Characteristics

- A tree consists of a collection of nodes connected by directed arcs.
- A tree has a single root node.
 - By convention, the root node is usually drawn at the top.
- A node that points to (one or more) other nodes is the parent of those nodes while the nodes pointed to are the children.
- Every node (except the root) has exactly one parent.
- Nodes with no children are leaf nodes.
- Nodes with children are interior nodes.
Tree Characteristics

- Directed Arcs
- Nodes

- Interior Nodes: have one or more children
- Leaf Nodes: have no children
Tree Characteristics

- Siblings
- Subtree rooted at node d
- Descendants of node d
Tree Characteristics

• Nodes that have the same parent are *siblings*.

• The *descendants* of a node consist of its children, and their children, and so on.
 - All nodes in a tree are descendants of the root node (except, of course, the root node itself).

• Any node can be considered the root of a *subtree*.

• A subtree rooted at a node consists of that node and all of its descendants.
Tree Characteristics

• There is a single, unique path from the root to any node
 – Arcs don’t join together

• A path’s **length** is equal to the number of arcs traversed

• A node’s **height** is equal to the maximum path length from that node to a leaf node:
 – A leaf node has a height of 0
 – The height of a tree is equal to the height of the root

• A node’s **depth** is equal to the path length from the root to that node:
 – The root node has a depth of 0
 – A tree’s depth is the maximum depth of all its leaf nodes (which, of course, is equal to the tree’s height)
Tree Characteristics

Root:
height = 3
Depth = 0

Height = 2:
path length to furthest leaf

Depth = 3:
path length to node from the root
• Nodes D and E are children of node B

• Node B is the parent of nodes D and E

• Nodes B, D, and E are descendents of node A (as are all other nodes in the tree...except A)

• E is an interior node

• F is a leaf node
Tree Characteristics (cont.)

Are these trees?

- Yes
- No
- No
• Binary Tree

– Nodes have no more than two children
– Children are generally referred to as “left” and “right”
Full *Binary* Tree

• Every node is either a leaf or has exactly 2 children
Perfect Full Binary Tree

Height of h will have 2^h leaves
Height of h will have $2^{h+1} - 1$ nodes
Complete Binary Tree

• Complete Binary Tree:
 full except for the bottom level which is filled from left to right
Not a Complete Binary Tree
Binary Tree Application: Animal Game

• Purpose: computer guesses an animal that you (the player) is thinking of using a sequence of questions
 – Internal nodes contain yes/no questions
 – Leaf nodes are animals (or answers!)

• How do we build it?
Binary Tree Application: Animal Game

Cat

Swim? Yes

Fish

Swim? No

Cat

Fly? Yes

Bird

Fly? No

Cat
Initially, tree contains a single animal (e.g., a “cat”) stored in the root node

Guessing…

1. Start at root.

2. If internal node \(\rightarrow \) ask yes/no question
 - Yes \(\rightarrow \) go to left child and repeat step 2
 - No \(\rightarrow \) go to right child and repeat step 2

3. If leaf node \(\rightarrow \) guess “I know. Is it a …”:
 - If right \(\rightarrow \) done
 - If wrong \(\rightarrow \) “learn” new animal by *asking* for a yes/no question that distinguishes the new animal from the guess
How many things can you distinguish between with q questions?

- If you can ask at most \(q \) questions, the number of possible answers we can distinguish between, \(n \), is the number of leaves in a full binary tree with height at most \(q \), which is at most \(2^q \)

- Taking logs on both sides: \(\log(n) = \log(2^q) \)

- \(\log(n) = q \) : for \(n \) outcomes, we need \(q \) questions

- **For 1,048,576 outcomes we need 20 questions**
Binary Search Trees

Concepts
Binary Search Tree

- Binary search trees are binary trees where every node’s value is:
 - Greater than all its descendents in the left subtree
 - Less than or equal to all its descendents in the right subtree
Intuition

All < 50

All >=50
BST Bag: Contains Example

- Alex
 - Abner
 - Abigail
 - Adam
 - Adela
 - Agnes
 - Angela
 - Alice
 - Allen
 - Audrey
 - Arthur

Object to find → Agnes
BST Bag: Add

- Do the same type of traversal from root to leaf
- When you find a null value, create a new node (children of leaves are NULL)
BST Bag: Add Example

Before first call to `add`

Object to add: Aaron

```
Alex
   Abner
      Abigail
         Aaron
   Adela
       Adam
   Angela
      Alice
           Agnes
      Allen
      Audrey
          Arthur
```

“Aaron” should be added here
BST Bag: Add Example

After first call to **add**

- Alex
 - Abner
 - Abigail
 - Aaron
 - Adela
 - Adam
 - Alice
 - Agnes
 - Allen
 - Angela
 - Audrey
 - Arthur

Next object to add: **Ariel**

“Ariel” should be added here
BST Bag: Remove

How would you remove Abigail? Audrey? Angela?
Who fills the hole?

- **Answer:** the leftmost child of the right subtree (smallest element in right subtree)

- Try this on a few values

- Alternatively: The rightmost child of the left subtree
Intuition...Remove 50
BST Bag: Remove Example

Before call to remove

Replace with: leftmost(right)
BST Bag: **Remove Example**

After call to **remove**
Special Case

- What if you don’t have a right child?
- Try removing “Audrey”
 - Simply return left child
• If tree is reasonably full (well balanced), searching for an element is $O(\log n)$. Why?
 – you’re dividing in half at each step: $O(\log n)$

• Alternatively, we are running down a path from root to leaf
 – We can prove by induction that in a complete tree (which is reasonably full), the path from root to leaf is bounded by $\text{floor}(\log n)$, so $O(\log n)$
Binary Search Tree: Useful Collection?

• We’ve shown all Bag operations (add, contains, remove) to be proportional to the length of a path, rather than the number of elements in the tree.

• We’ve also said that in a reasonably full tree, this path is bounded by: \(\text{floor}(\log_2 n) \)

• This Bag is faster than our previous implementations!
Comparison

- **Average Case Execution Times**

<table>
<thead>
<tr>
<th>Operation</th>
<th>DynArrBag</th>
<th>LLBag</th>
<th>Ordered ArrBag</th>
<th>BST Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>O(1⁺)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(logn)</td>
</tr>
<tr>
<td>Contains</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(logn)</td>
<td>O(logn)</td>
</tr>
<tr>
<td>Remove</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(logn)</td>
</tr>
</tbody>
</table>
Your Turn

- Worksheet28_BSTPractice
Binary Search Trees II
Bag Implementation
Goals

• BST Representation
• Bag Operations
• Functional-style operations
struct BSTree {
 struct Node *root;
 int cnt;
};

struct Node {
 TYPE val;
 struct Node *left;
 struct Node *right;
};

void addBSTree(struct BSTree *tree, TYPE val);
int containsBSTree(struct BSTree *tree, TYPE val);
void removeBSTree(struct BSTree *tree, TYPE val);
A useful trick (adapted from the functional programming world): Recursive helper routine that returns the tree with the value inserted

Node addNode(Node current, TYPE value)
 if current is null then return new Node with value
 otherwise if value < Node.value
 left child = addNode(left child, value)
 else
 right child = addNode(right child, value)
 return current node
Process Stack
void add(struct BSTree *tree, TYPE val) {
 tree->root = _addNode(tree->root, val);
 tree->cnt++;
}
Recursive Helper – functional flavor

```c
struct Node *addNode(struct Node *cur, TYPE val) {
    struct Node *newnode;
    if (cur == NULL) {
        /* base case goes here */
        return newNode;
    }
    if (val < cur->val) {
        /* recursive call left */
        else /*recursive call right */
        return cur;
    }
```
Iterative Flavor - Java

```java
public void insert(int data) {
    if (m_root == null) {
        m_root = new TreeNode(data, null, null);
        return;
    }
    Node root = m_root;
    while (root != null) {
        if (data == root.getData()) {
            return;
        } else if (data < root.getData()) {
            if (root.getLeft() == null) {
                root.setLeft(new TreeNode(data, null, null));
                return;
            } else {
                root = root.getLeft();
            }
        } else {
            root = root.getRight();
        }
    }
}
```
Iterative (Java)

```java
} else {
    if (root.getRight() == null) {
        root.setRight(new TreeNode(data, null, null));
        return;
    } else {
        root = root.getRight();
    }
}
```
How would you remove Abigail? Audrey? Angela?
Who fills the hole?

• Answer: **the leftmost child of the right subtree**
 (smallest element in right subtree)

• Useful to have a couple of private inner routines:
Before call to **remove**
After call to **remove**
Who fills the hole?

- **Answer:** the leftmost child of the right subtree (smallest element in right subtree)

- Useful to have a couple of private inner routines:

  ```c
  TYPE _leftmost(struct Node *cur) {
      ...
      /* Return value of leftmost child of current node. */
  }

  struct Node * _removeLeftmost(struct Node *cur) {
      ...
      /* Return tree with leftmost child removed. */
  }
  ```
Node removeNode(Node current, TYPE value)
 if value = current.value
 if right child is null
 return left child
 else
 replace value with value in leftmost child of right subtree
 set right child to result of removeLeftmost(right)
 else if value < current.value
 left child = removeNode(left child, value)
 else right child = removeNode(right child, value)
return current node
Comparison

- **Average Case Execution Times**

<table>
<thead>
<tr>
<th>Operation</th>
<th>DynArrBag</th>
<th>LLBag</th>
<th>Ordered ArrBag</th>
<th>BST Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>O(1+)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Contains</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Remove</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
</tbody>
</table>
Space Requirements

• Does the functional-style recursive version require more or less space than an iterative version?
Your Turn

• Complete the BST implementation in Worksheet #29