Dynamic Arrays
Arrays: Pros and Cons

• **Pro:** only core data structure designed to hold a collection of elements

• **Pro:** random access: can quickly get to any element \(\rightarrow O(1) \)

• **Con:** fixed size:
 – Maximum number of elements must be specified when created
Dynamic Array (Vector or ArrayList)

• The dynamic array gets around this by *encapsulating a partially filled array that can grow when filled*

• Hide memory management details behind a simple API

• Is still randomly accessible, but now it grows as necessary
Unlike arrays, a dynamic array can change its capacity.

Size is logical *collection* size:

- Current number of elements in the dynamic array
- What the programmer thinks of as the size of the collection
- Managed by an internal data value

Capacity is physical array size: # of elements it can hold before it must resize.
Partially Filled Dynamic Array

data = []
size = 10
cap = 16

Size
(= size)

Capacity
(= cap)
• Adding an element to end is usually easy — just put new value at end and increment the (logical) size

• What happens when size reaches capacity?
Before reallocation:

- data =
- size = 8
- cap = 8

After reallocation:

How much bigger should we make it?

- Must allocate new (larger) array and copy valid data elements
- Also... don’t forget to free up the old array
Before reallocation:

\[
\begin{align*}
\text{data} &= \quad \quad \quad \\
\text{size} &= 8 \\
\text{cap} &= 8
\end{align*}
\]

After reallocation:

\[
\begin{align*}
\text{data} &= \quad \quad \quad \\
\text{size} &= \quad \quad \quad \\
\text{cap} &= \quad \quad \quad
\end{align*}
\]

Big-Oh of insertion?
- Best Case
- Worst Case

Must allocate new (larger) array and copy valid data elements

Also...don’t forget to free up the old array
Adding to Middle

Must make space for new value

Be Careful!

Loop from bottom up while copying data

Add at idx

Before

After

Big-Oh?
Best Case
Worst Case
Remove also requires a loop.
This time, should it be from top (e.g. at idx) or bottom?

Big-Oh?
Best Case
Worst Case

Remove Element

Remove \textit{idx}

Before

After

\textbf{Before} \rightarrow \textbf{After}
Side Note

• realloc() can be used in place of malloc() to do resizing and *may* avoid ‘copying’ elements if possible
 – It’s still O(n) when it fails to enlarge the current array!

• For this class, use malloc only (so you’ll have to copy elements on a resize)
Something to think about...

• In the long term, are there any potential problems with the dynamic array?
 – hint: imagine adding MANY elements in the long term and potentially removing many of them.
Amortized Analysis

• What’s the cost of adding an element to the end of the array?
Amortized Analysis

• To analyze an algorithm in which the worst case only occurs seldomly, we must perform an amortized analysis to get the average performance

• If an operation requires a constant number of operations on average, then we say it has complexity $O(1^+)$ – amortized constant cost!
Intuition for Amortized Analysis

• Consider inserting n elements into a dynamic array.

• All inserts are $O(1)$ except when there is a resize.
 – So we would like to ensure only a small number of resize operations relative to the number of inserts
 – If the number of resizes is very small compared to n, then the average runtime is dominated by the basic insertion operations and not the resize operations
Intuition for Amortized Analysis

Suppose we always double the capacity after a resize.

What is the maximum number of resize (and copy) operations for \(n \) inserts?

\[
\text{# of resizes} \leq \log(n)
\]

So, #of resizes is very small compared to \(n! \)
Detailed Amortized Analysis

Suppose that copying an element to a memory location requires $O(1)$ time.

We must copy each element the first time it is inserted and then again for each of the following $\log(n)$ resize operations.

What is the max number of copies for inserting n elements?

of copies for first insertions = n

of copies due to all resize

= (# for last resize) + (# for second to last) + + (# for first)

$\leq n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \frac{n}{16} + \ldots$

$\leq n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots\right)$
Detailed Amortized Analysis

- **# of copies for first insertions** = n

- **# of copies due to all resizes**

 = (# for last resize) + (# for second to last) + + (# for first)

 \leq $n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \ldots$

 $\leq n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots \right)$

 $\leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i}$

 = $n \cdot 2$

 = $O(n)$

Adding these together we get $O(n) + O(n) = O(n)$
Banker’s Method (Alternative Approach)

- Assign a cost c'_i to each operation
- When you perform the operation, if the actual cost c_i, is less, then we save the credit $c'_i - c_i$ to hand out to future operations
- Otherwise, if the actual cost is more than the assigned cost, we borrow from the saved balance
- For n operations, the sum of the total assigned costs must be \geq sum of actual costs

$$\sum_{i=1}^{n} \hat{C}_i \geq \sum_{i=1}^{n} C_i$$

Example – Adding to Dynamic Array

<table>
<thead>
<tr>
<th>Add Element</th>
<th>Old Capacity</th>
<th>New Capacity</th>
<th>Copy Count</th>
<th>c'_i</th>
<th>c_i</th>
<th>b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>(3-1) = 2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>(1+1) = 2</td>
<td>(5-2) = 3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>(2+1) = 3</td>
<td>(6-3) = 3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>(6-1) = 5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$c_i = \text{actual cost} = \text{insert (1)} + \text{copy cost (1)}$

$b_i = \text{bank account}_i = \text{bankaccount}_{i-1} + \text{current deposit} - \text{actual cost} = (b_{i-1} + c'_i) - c_i$

We say the add() operation is therefore $O(1^+) – \text{amortized constant cost!}$
Imagine you’re starting with a partially filled array of size n. It already has $n/2$ elements in it (just doubled it!). For each element you add we’ll put a cost of 3 in the bank.

1: to assign each of the new $n/2$ elements into the array

1: to copy each of the new $n/2$ elements into a larger array when it’s time to resize

1: to copy the other $n/2$ that were already in the array