Quiz 2 much better than Quiz 1

- quiz 2 mean: 2.47; quiz 1 mean: 2.0
Theorem

The class of regular languages is closed under concatenation.

If L_1 and L_2 are regular, then so is $L_1 \circ L_2$.

Proof

Can't do it yet.
We need...

Nondeterminism

- concatenation of regular languages is still regular
Non-Determinism

"Given the current state, there may be multiple next states."

- The next state is chosen at random.
- All next states are chosen in parallel and pursued simultaneously.

FSM means Deterministic
Finite State Automaton/Machine

DFA means DETERMINISTIC
Finite State Automaton

NFA means NONDETERMINISTIC
Finite State Automaton

Now we will allow
- Multiple edges with the same label out of a node.

Epsilon Edges

Which edge should you take???

Can take an ε-edge without scanning a symbol. It is "OPTIONAL"!
Any path to accept is accepted

- DFA is much harder (see HW1)
- but does NFA help for the complement?

EXAMPLE

All strings that contain 011110

EXAMPLE STRING: 0100 011110101

Lots of bad choices
that don't work,
that don't reach an accept state

All we need is one way
to reach ACCEPT.

If there is any way to run the machine that ends with ACCEPT, then the NFA accepts.
As long as there is (at least) one path...

Lots of choices - which one to try?

* Try them all.
* Make the right choice at each point.

Deterministic

Non-deterministic

Choice points

Accept (or not)

Choice points

Reject

Accept

Just need one accept!

Example

String:
010110

"Computation Tree" "Choice Tree"
NFA == DFA, but often a lot easier

Theorem
For every nondeterministic F.S.M., there is an equivalent deterministic F.S.M.

... But it may be large and hard to find!

Example
All strings over \(\{0,1\}^* \) that have a “0” in the second to the last position.

NFA

Q: how to use NFA for union? for intersection?

Example
String contains either ...
... 0100 ...
or ... 0111 ...

When to start looking? Which string to look for?

Non-determinism!

CHALLENGE:
Build/Design a DFA to recognize this language.
Power set (all subsets of a set)

- Power set is one of the most important & beautiful mathematical concepts.
- \(P(Q) \) is often written as \(2^Q \) since \(|2^Q| = 2^{|Q|} \).

\[
2^Q \triangleq \{ A \mid A \subseteq Q \}
\]
Q: is every DFA also an NFA??
A: technically, no!
\[
\delta_{NFA}(p, a) = \{\delta_{DFA}(p, a)\}
\]
Computation of NFA w/o epsilon

- string \(w \) is accepted iff. \(\delta^*(q_0, w) \cap F \neq \emptyset \)
- without epsilon transitions, \(\delta^* \) is easy to define
- with epsilon transitions, you need to define epsilon-closure (very hard; will come back later)

\[
\delta^*(q, \varepsilon) = \{q\}
\]

\[
\delta^*(q, xa) = \bigcup_{p \in \delta^*(q,x)} \delta(p, a)
\]

alternatively

\[
\delta^*(q, ax) = \bigcup_{p \in \delta(q,a)} \delta^*(p, x)
\]

\[
\bigcup_{t \in \{1,2,3\}} \{t, t^2\} = \{1,1\} \cup \{2,4\} \cup \{3,9\}
\]
NFA => DFA w/o epsilon

how to convert NFA to DFA?

EXAMPLE
Accept all strings over \{0,1,\}^* ending with "00."

String to check: 00100
Simulate the execution. Put a finger on any state we could be in.

\emptyset A B C AB BC AC ABC

Let \(N \) = Number of states in NFA. What is the (worst case) number of states in the equivalent DFA?

unused states
NFA => DFA w/o epsilon

THEOREM

Every Nondeterministic FSM has an equivalent Deterministic FSM.

"Equivalent" = Recognizes the same language.

PROOF BY CONSTRUCTION

Given a NFA, let's show how to build an equivalent DFA.

Let $M = (Q, \Sigma, \delta, q_0, F)$

Construct $M' = (Q', \Sigma, \delta', q'_0, F')$

where...

$Q' = P(Q)$

Assume NFA has k states.

Then the DFA will have 2^k states.

$\text{A B C} \rightarrow \text{A B C AB BC AC ABC}$
Formally: subset construction

NFA $M = (Q, \Sigma, \delta, q_0, F)$

DFA $M' = (Q', \Sigma, \delta', q_0', F')$

where $Q' = P(Q)$

$q_0' = \{q_0\}$

$F' = \{A \in P(Q) \mid A \cap F \neq \emptyset\}$

$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$

Thm.: $L(M) = L(M')$

Idea: $\forall w \in L(M), \exists p \in F$, s.t. $\delta^*(q_0, w) = p$.

want to show: $p \in \delta'(q_0, w)$

also need the other direction
Epsilon-Closure

But what about ε-edges?

Consider a state in the DFA that we're building.

A state "R" in the DFA is a set of states from the NFA.

Look back at M, the NFA. What states can we reach by going through ε-edges?

Also include the states we're in (i.e., include B, C, and E).

Define "Epsilon-closure"

\[E(R) = \{ q \in Q \mid q \text{ can be reached from a state in } R \text{ by following zero or more } \varepsilon \text{-edges.} \} \]

Example

\[E([BCE]) = \{ B, C, D, E, G, H \} = \{BCDEGH\} \]

Modify the transition function:

\[S'(R, a) = \{ q \in Q \mid q \in E(S(r, a)) \} \]

for some \(r \in R \)

Also, modify the start state in the constructed DFA:

\[q_0' = E([\varepsilon, \varepsilon]) \]

End of proof