
ASSIGNMENT #9
Heat Diffusion Using the Explicit Method

DUE - 11/26/17, 11:59pm

You will practice writing a Python program and gain an understanding of the 1-D and 2-D heat

diffusion model, the explicit method for solving finite difference approximations, redirecting

output to a file, and visualization of data. Your program will simulate the diffusion of heat

through a 1-D or 2-D object, such as a wire or plate, using the explicit method to solve for new

time instances.

Background Information:

I. How do we do this? Finite Difference Approximation to Solve Derivatives

II. Function of Space and Time - u(x, t)

 Boundary conditions - u(x0, t) = boundary1, u(xn, t) = boundary2

 Initial conditions - u(xi, 0) = initial value, i = 1..n-1

III. What exactly do we mean by 1-D heat diffusion on a wire?

 leave time continuous

 divide on space/finite intervals

IV. Finite Difference Approximation, FDA, for Derivatives

 f'’(x) ≈ (f(x + h) - f(x)) / h

 f'’’(x) ≈ (f(x + h) - 2 * f(x) + f(x - h)) / h * h

 So what is this h thing?

- the change in the variable you are taking the derivative w/ respect to

VI. What is the heat diffusion equation?

 Conservation of mass, energy, momentum, etc.

 Rate of flow in - Rate of flow out=Rate of heat storage

Don’t freak out!!! We don’t have to do derivatives to write a program for it

Let’s use the explicit method for finite difference approximation (FDA) to solve the

equation...

 What are we interested in? 𝑢𝑥
𝑡+∆𝑡

Writing Your Program:

1. What are the inputs/outputs to the heat diffusion problem?

 Material Parameters: thermal conductivity (k), density (ρ), specific heat (c)

 Initial and Boundary conditions

 Material Length and how to divide length

 Number of Timer Intervals and change in time

 Time instance and values of all elements of 1-D or 2-D object at that time instance

 |(k*change in time)/(change in x^2*c* ρ)| < .5 for stability

2. Pseudocode for Explicit heat diffusion

For all time instances

 For all points on material (u)

 predict new value at new time instance (equation)

 End For

End For

3. Program Input/Output

 Read whether the object is 1-D or 2-D from command-line arguments, catch bad input

 Read the information from a file, make sure to handle anything that isn’t good (including

an unstable condition for calculation < .5)

 Print the time interval and values of the wire at each time instance to the screen

 Print the binary information to a file for grads visualization (instructions below)

4. Example Input w/ Thermal Conductivity, Density, and Specific Heat for Nickel (you can

look up other metals here: http://www.engineersedge.com/properties_of_metals.htm).

52.4 0.321 0.12 // Thermal conductivity (k), density (ρ), specific heat (c)

0.0 0.0 100.0 //Initial temp, and boundary conditions (left and right)

10 10 //Length of wire and sections

50 .000335 //Time intervals and change in time

Output:

http://www.engineersedge.com/properties_of_metals.htm

Since GrADS only visualizes binary data, go back to your python program and add then

information need to print to a binary file:

Import the struct library for packing binary data

import struct

Open the file for writing in binary

f=open(“heat.dat”, ‘wb’)

Write the calculated u for the new time instance

f.write(struct.pack(‘f’, u_new[i]))

Once you have your file, you can use GrADS to visualize your data. Read more about GrADS

Visualization package, http://cola.gmu.edu/grads/gadoc/gadoc.php, and GrADS Gridded Data

Sets, http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html.

I have this setup in my directory on the ENGR server. Therefore, in order to see things displayed

on the ENGR server, you have to use MobaXterm (Windows) or start Xquartz and ssh with –Y

(MacOS).

Back to the ENGR server…

Download the grads control file, heatdiff.ctl, and the grads script, 1d_grads_script.gs, that will

open the binary data, heat.dat, and display the heat diffusion in grads. You can read the GrADS

descriptor/control files for the data:
http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html#descriptor.

Set the GADDIR environment variable:

setenv GADDIR /nfs/stak/faculty/p/parhammj/grads-2.0.1/lib

Now, you can actually run the grads visualization tool

/nfs/stak/faculty/p/parhammj/grads-2.0.1/bin/grads -l

You should now get a prompt that looks like, ga->, and this is where you can open the

heatdiff.ctl file and then run the 1d_grads_script.gs files to make sure you did everything right.

There is a picture below that shows these commands and the pictures you should get showing the

heat diffusion. You should see heat diffuse down your wire, if your output is correct… quit will

close grads!!!!

Below is the picture you should get:

http://cola.gmu.edu/grads/gadoc/gadoc.php
http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html
http://classes.engr.oregonstate.edu/eecs/fall2017/cs160h-001/assignments/heatdiff.ctl
http://classes.engr.oregonstate.edu/eecs/fall2017/cs160h-001/assignments/1d_grads_script.gs
http://cola.gmu.edu/grads/gadoc/aboutgriddeddata.html#descriptor

Now, Extend this to 2-D

t

u
c

y

u

x

u
k

2

2

2

2

For our 2-D array, we will just make it square to make it easy, i.e. same number of sections in x

and y direction!

Example Input w/ Thermal Conductivity, Density, and Specific Heat for Nickel (you can look up

other metals here: http://www.engineersedge.com/properties_of_metals.htm).

52.4 0.321 0.12 // Thermal conductivity (k), density (ρ), specific heat (c)

0.0 100.0 100.0 //Initial temp, and boundary conditions (left and right)

100.0 100.0 //Boundary conditions (top and bottom)

10 10 //Length of wire and sections

50 .0000335 //Time intervals and change in time

Output:

u
i,j

u
i,j-1

u
i,j+1

u
i+1,j

 u
i-1,j

t

uu
c

y

uuu

x

uuu
k

t

u
c

y

u

x

u
k

t

i

tt

iji
t

ji
t

ji
t

ji
t

ji
t

ji
t

2

1,,1,

2

,1,,1

2

2

2

2

)(

2

)(

2

http://www.engineersedge.com/properties_of_metals.htm

Since GrADS only visualizes binary data, go back to your python program and add then

information need to print to a binary file:

Import the struct library for packing binary data

import struct

Open the file for writing in binary

f=open(“heat2.dat”, ‘wb’)

Write the calculated u for the new time instance

f.write(struct.pack(‘f’, u_new[i][j]))

Download the grads control file, heatdiff2.ctl, and the grads script, 2d_grads_script.gs, that will

open the binary data, heat.dat, and display the heat diffusion in grads.

Now, you can run the grads visualization tool as before, and you should now get a prompt that

looks like, ga->, and this is where you can open the heatdiff2.ctl file and then run the

2d_grads_script.gs files to make sure you did everything right. There is a picture below that

shows these commands and the pictures you should get showing the heat diffusion. You should

see heat diffuse down your wire, if your output is correct… quit will close grads!!!!

Below is the picture you should get:

http://classes.engr.oregonstate.edu/eecs/fall2017/cs160h-001/assignments/heatdiff2.ctl
http://classes.engr.oregonstate.edu/eecs/fall2017/cs160h-001/assignments/2d_grads_script.gs

