
CS 160

CS Orientation

Input/Output, Conditionals, and

Loops

1

Relational Operators and Symbols

• >

• >=

• <

• <=

• ==

• !=

2

Logical Operators and Symbols

• not

• and

• or

3

Python Examples

• not True or False

• 3 > 2 + 4

• True and True or True and False

• ((True and True) or True) and False

• not 3 < 2 and True or False

4

Python Decision Logic:

Print 1, 3, 5, or 7 stars

Differences/Similarities in these?

if(x==1):

print(" * ")

if(x==3):

print(" *** ")

if(x==5):

print(" ***** ")

if(x==7):

print("*******")

5

if(x==1):

print(" * ")

elif(x==3):

print(" *** ")

elif(x==5):

print(" ***** ")

elif(x==7):

print("*******")

x=int(input(“Print 1, 3, 5, 7 stars?”));

Python Decision Logic:

Print 1, 3, 5, or 7 (for any other #) stars

Differences/Similarities in these?

if(x==1):

print(" * ")

if(x==3):

print(" *** ")

if(x==5):

print(" ***** ")

else:

print("*******")

6

if(x==1):

print(" * ")

elif(x==3):

print(" *** ")

elif(x==5):

print(" ***** ")

else:

print("*******")

x=int(input(“Print 1, 3, 5, 7 stars?”));

Exercise

• Write an algorithm that will tell a user

whether they have entered a valid triangle

using the triangle inequality property (any

sum of 2 sides cannot be less than the third

side).

7

Loop Logic Structure

0-8

Python Loop Logic

9

for x in range(7):

print("*”, end=“”)

OR

x=1

while(x<=7):

print("*”, end=“”)

x+=1

Exercise

• How about if we alter this to allow a user to

do this for any number of triangles?

10

Strings

• Create a string

my_string=“hello”;

• Access a character

my_string[0] #gives you first character

• Length

len(my_string)

11

Exercise

• Write an algorithm to determine if input is

bad without using exceptions, i.e. it would

work in any language!!! ☺

12

Functions

• May need to import a library

• Use the function from library/object

• Example:

import math

math.sqrt(4)

0-13

In-class Exercise #4
Design a Python program that takes a positive whole number
n as input and outputs the square root of n using the
Babylonian algorithm. The Babylonian algorithm computes
the square root of a positive number, n, as follows:

1. Make a guess at the answer (you can pick n/2 as your
initial guess).

2. Compute r = n / guess

3. Set guess = (guess + r) / 2

4. Go back to step 2 for as many iterations as necessary. The
more steps 2 and 3 are repeated, the closer guess will
become to the square root of n.

5. Compare your calculated square root with the math.sqrt()
result.

14

