
LAB #4
Conditionals and Loops in Python 3

(2 pts) Characters and ASCII Values

Now, look up the ASCII character set in a web browser. Determine the numbers
that correspond to the letters in your full name. This includes a capital letter for
your first and last name with a capital middle initial (if you have one) followed by a
period, i.e. Jennifer Parham-Mocello or Jennifer R. Parham. Write down the numbers
for both you and your partner.

Now, write a python program that uses the ordinal values from the ASCII
character set that you found for your full name and prints the characters
corresponding to the values. Your name should come out with the letters beside each
other and spaces between your first, middle initial, and last name. In other words, you
do not want the print function to automatically insert a newline at the end.

Example:

print(chr(79), end="")

(4 pts) Program Our Design

Write a python program that will tell a user whether they have entered a valid triangle
using the triangle inequality property (any sum of 2 sides cannot be less than the third
side). Look over the slides for if, else if, else syntax in Python 3.

Modify your program to accommodate the two ways you could allow a user to determine
any number of valid triangles. Make sure you use two different looping techniques to
accommodate this. Hint: Look at class note slides for the two approaches and syntax.

(2 pts) Will it sink or will it float?

Now, let’s design another program that takes the weight (in pounds) and radius (in
feet) of a sphere as input and outputs the buoyant force. Use γ = 62.4 lb/ft3 as the
specific weight of water, and the volume of the sphere is (4/3)πr3. The buoyant force
can be computed by

Fb = V x γ

where Fb is the buoyant force, V is the volume of the submerged object, and γ is the
specific weight of the fluid.

Now, write the python program, buoyancy.py, that uses your design.

Modify this so that it will continue to ask the user if they want to find out if another object
sinks or floats until they do not want to do this task any longer.

(2 pts) Finding the square root

Design a Python program that takes a positive whole number n as input and outputs
the square root of n using the Babylonian algorithm. The Babylonian algorithm
computes the square root of a positive number, n, as follows:

1. Make a guess at the answer (you can pick n/2 as your initial guess).
2. Compute r = n / guess
3. Set guess = (guess + r) / 2
4. Go back to step 2 for as many iterations as necessary. The more steps 2 and 3

are repeated, the closer guess will become to the square root of n without using
math.sqrt().

5. Compare your calculated square root with the math.sqrt() result to see which
uses a better approximation algorithm.

Extended Learning:
Write an algorithm to determine if input for your assignment #4 is bad without using
exceptions or built-in functions, i.e. it would work in any language!!! 

