
CS 161

Intro to CS I

More About Functions:

Scope, Return Values, Default Values,

and Overloading

1

void Functions

• Doesn’t return a value

• Still has arguments/parameters

2

Scope (Visibility)

• Part of program in which a declaration is valid

• Local variable

– Declared inside a function only accessible inside

function

• Localizing variables

– Declaring variable in innermost scope

3

Illegal access outside loops

for(x = 0; x < 10; x++) {

int y = 10;

cout << “The value of x * y is: ” << x*y << endl;

}

cout << “The value of y is: ” << y << endl; /*y outside scope*/

• How do we fix this?

• What about if/else blocks?

4

Illegal access in functions

int main () {

int x=2, y=3;

compute_sum();

sum = x+y; //error: sum hasn’t been declared

return 0;

}

void compute_sum() {

int sum = x+y; //error: x and y outside scope

}

5

Arguments/Parameters Demo

• How could you make an is_positive_int()

function?

• How about an is_int()?

• Does it make sense to have it void?

6

Making it a void function…

7

Making it a void function…

8

Returning Values Demo…

9

Returning Values Demo…

10

Global Variables

Do NOT use them!!!

11

Passing Arguments/Parameters

12

Passing Arguments/Parameters

13

Back to break, exit, and return

• break – used with switch and loops, breaking out of the

closest associated case or loop(for, while, or do while). This

statement can only occur in a loop or case, otherwise the

compiler yells!

• return – leave the current function, which exits the program

when in the main() function. You can put this anywhere

inside any function, otherwise the compiler yells!

• exit() – exit the entire program, no matter where this is

encountered. You can put this anywhere inside any function,

as long as you include <cstdlib>, otherwise the compiler yells!

14

