CS 161
Intro to CS |

Pointers vs. References Exercise

and Intro to Recursion

Oregon State University

Odds and Ends...

e Assignment #4 (Little Acorns)
* Design due Sunday night on Canvas.

— Make sure you include postconditions and
preconditions for functions.

More About Functions

* Do not use global variables!
* Function Headers

— Description, Parameters, and Return Value

— Preconditions
e What is this?

— Postconditions (look at Recitation Worksheet!)
 What is this?

Oregon State University

Pointer and References Cheat Sheet

— |If used in a declaration (which includes function
parameters), it creates the pointer.

* Ex. int *p; //p will hold an address to where an int is stored

— If used outside a declaration, it dereferences the pointer
* Ex. *p=3; //goes to the address stored in p and stores a value

* Ex. cout << *p; //goes to the address stored in p and fetches the
value

e &
— |If used in a declaration (which includes function

parameters), it creates and initializes the reference.

* Ex. void fun(int &p); //p will refer to an argument that is an int by
implicitly using *p (dereference) for p

* Ex. int &p=a; //p will refer to an int, a, by implicitly using *p for p
— If used outside a declaration, it means “address of”

* Ex. p=&a; //fetches the address of a (only used as rvalue!!!) and
store the address in p.

> ENGR

[C] Re-attach ¥ Fullscreen Ny Stay ontop [7]|Duplicate

WoOo~NOUEWN R

#include <iostream>
using namespace std;

void mystery(int x, int i) {
X=1;

|

void mystery(int *x, int 1) {
*x=1;

}

int main() {
int x=4, &r=x, *p=&x;

cout << &x << endl;
cout << x << endl;

cout << &r << endl;
cout << r << endl;

cout << &p << endl;
cout << p << endl;
cout << *p << endl;

mystery(r, 1);
cout << x << endl;

mystery(&r, 2);
cout << x << endl;

mystery(p, 3);
cout << X << endl;

mystery(*p, 4);
cout << X << endl;

mystery(*(&p), 5);
cout << x << endl;

mystery(&(*p), 6);
cout << x << endl;

return 0;

s
=

[€iClose

In-class Exercise

Pointers vs. References
 What if you made a pointer (p2) that points to a

pointer (p) to an int (x)?
— What would the picture look like?
— Write the code for this picture.

e Can you make this same picture for
references?

— What if you had two references, r and r2?

Recursion

* What is it?
— Function that calls itself 1 or more times (directly
or indirectly)
— Has 1 or more base case for stopping

— Inductive reasoning: general case must eventually
be reduced to a base case

Example: Drawing Rec;car\wgles

\ <
* |terative Solution: b\ ¢~

d

void draw_rect(int i) {
for(;i>0;i--){

cout << "FFxFFEFXL << endl;

cout << "* * << endl;

cout << "F¥*EXXN 2 and| << @n I’N\l
S

Example: Drawing RectaLngI
* Recursive Solution o\ O\ %

void draw_rect(int i) {

if(i>0){ //Base case _
draw rect(—-}; //\Recurswe call 6/ \ %%

COUt << 1k 5k 5k 5k 5k 5k ¢ << enc .

cout << "* * << endl; s
cout << "¥EFE**ERN 20 and| << endl; ‘

'\

What is different when we call after?

SAg
 Recursive Solution \ \

void draw_rect(int i) {

-

if(i>0){ //Base case V\”&
cout << "FFFFEXL << endl; ; /@
cout << "* * << endl; | \
cout << "FrFEXFC << endl << endl;

-

draw_rect(--i); //Recursive call 3r04

}
}

Oregon State University 10

