
LAB #8 
 
Each lab will begin with a brief demonstration by the TAs for the core concepts examined 

in this lab. As such, this document will not serve to tell you everything the TAs will in the 

demo. It is highly encouraged that you ask questions and take notes.  

In order to get credit for the lab, you need to be checked off by the end of lab. For non-

zero lab 6 or 7, you can earn full points for completion of the lab outside of lab time, but 

you must finish the labs before leaving today!!!! For extenuating circumstance, contact 

your lab TAs and Jennifer Parham-Mocello.  

Pair Programming 

From this lab forward, you can choose a partner for pair programming. You must be checked 

off together. You only need one computer for pair programming. One person will be the 

driver, who controls the computer and codes, while the other is the navigator, who observes and 

advises.  After 20 minutes, your TA will switch driver and navigator, continuing this pattern until 

the task is complete. Please read more about pair programming and the benefits: Pair 

Programming Student Handout 

Lab 8 Details: 

In this lab, you will only implement one new concept that is used in your current assignment.  
Instead, you will debug programs written for you.  Due to the number of students who did not 
finish Lab 6 and 7, I want to give you a little bit of a break!!! 

For non-zero lab 6 or 7, you can earn full points for completion of the lab outside of lab 
time, but you must finish these labs before leaving today!!!!  If you don’t finish lab 8, you 
can get all the points back at the beginning of Lab 9 next week, since lab 8 is just 
debugging and can be done on your own.  If you finish Lab 8 in lab today, then you will 
be required to do the extended learning, which is part of your lab for next week. 

 (2 pts) Debugging using a debugger  

The purpose of a debugger such as GDB is to allow you to see what is going on "inside" 
another program while it executes -- or what another program was doing at the moment 
it crashed. 

GDB can do four main kinds of things (plus other things in support of these) to help you 
catch bugs in the act: 

 Start your program, specifying anything that might affect its behavior. 
 Make your program stop on specified conditions. 
 Examine what has happened, when your program has stopped. 
 Change things in your program, so you can experiment with correcting the 

effects of one bug and go on to learn about another. 

file://///farm.engr.oregonstate.edu/classes/eecs/winter2017/cs161-001/public_html/labs/PP_StudentHandout.pdf
file://///farm.engr.oregonstate.edu/classes/eecs/winter2017/cs161-001/public_html/labs/PP_StudentHandout.pdf


GDB Manpage is a good source of information, i.e. man gdb. 

The first thing you need to do to start debugging your program is to compile it with 
debugging symbols, this is accomplished with the -g flag:  

g++ filename.cpp -g -o filename 

Lets start with a simple program that gets a line of text from the user, and prints it out 
backwards to the screen:  

#include <iostream> 

#include <string.h> 

 

using namespace std; 

 

int main(int argc, char *argv[]){ 

 char input[50];   

 int i = 0; 

 

 cin >> input; 

 

 for(i = strlen(input); i >= 0; i--){  

    cout << input[i]; 

 }  

 cout << endl; 

 

 return 0; 

} 

 

compile and start the debugger with: 
g++ debug.cpp -g -o debug 

gdb ./debug  (start another session which will run gdb) 

 



Here is a mini tutorial for the 8 main commands that you will mostly be using in your 
debugging session 

1. break 

2. run 

3. print 

4. next & step 

5. continue 

6. display & watch 

7. where (or bt) 

1. The break Command: 

gdb will remember the line numbers of your source file. This will let us easily set up break points 

in the program. A break point, is a line in the code where you want execution to pause. Once you 

pause execution you will be able to examine variables, and walk through the program, and other 

things of that nature.  

Continuing with our example lets set up a break point at line 6, just before we declare int i = 
0;  

(gdb) break 9 

Breakpoint 1 at 0x400923: file debug.cpp, line 9. 

(gdb) 

 

2. The run Command: 

run will begin initial execution of your program. This will run your program as you normally 

would outside of the debugger, until it reaches a break point line. This means if you need to pass 

any command line arguments, you list them after run just as they would be listed after the 

program name on the command line. 

At this moment, you will have been returned to the gdb command prompt. (Using run again after 

your program has been started, will ask to terminate the current execution and start over) 

From our example: 

Starting program: /nfs/farm/classes/eecs/fall2013/eecs161-001/private/a.out 

 

Breakpoint 1, main (argc=1, argv=0x7fffffffd008) 

    at debug.cpp:9 

9          int i = 0; 

3. The print Command: 



print will let you see the values of data in your program. It takes an argument of the variable 

name. 

In our example, we are paused right before we declare and initialize i. Let’s look what the value 

of i is now: 

(gdb) print i 

$1 = -1075457232 

(gdb) 

i contains garbage, we haven’t put anything into it yet. 

4. The next and step Commands: 

next and step do basically the same thing, step line by line through the program. The difference 

is that next steps over a function call, and step will step into it. 

Now in our example, we will step to the beginning of the next instruction 

(gdb) step 

11      cin >> input; 

(gdb) 

before we execute the cin, let’s check the value of i again: 

(gdb) print i 

$2 = 0 

(gdb) 

i is now equal to 0, like it should be. 

Now, let’s use next to move into the cin statement: 

(gdb) next 

What happened here? We weren't returned to the gdb prompt. Well the program is inside cin, 

waiting for us to input something.  

Input string here, and press enter. 

5. The continue Command 

continue will pick up execution of the program after it has reached a break point. 

Let’s continue to the end of the program now: 

(gdb) continue 



Continuing. 

olleh 

 

Program exited normally. 

(gdb) 

Here we've reached the end of our program, you can see that it printed in reverse "input", which 

is what was fed to cin. 

6. The display and watch Commands: 

display will show a variable’s contents at each step of the way in your program. Let’s start over 

in our example. Delete the breakpoint at line 6 

(gdb) del break 1 

This deletes our first breakpoint at line 9.  You can also clear all breakpoints w/ clear. 

Now, let’s set a new breakpoint at line 14, the cout statement inside the for loop 

(gdb) break 14 

Breakpoint 2 at 0x40094c: file debug.cpp, line 14. 

(gdb) 

Run the program again, and enter the input.  When it returns to the gdb command prompt, we 

will display input[i] and watch it through the for loop with each next or breakpoint. 

Breakpoint 2, main (argc=1, argv=0x7fffffffd008) 

    at debug.cpp:14 

14            cout << input[i];  

(gdb) display input[i] 

1: input[i] = 0 '\0' 

(gdb) next 

13      for(i=strlen(input);i>=0;i--) { 

1: input[i] = 0 '\0' 

(gdb) next 

 

Breakpoint 2, main (argc=1, argv=0x7fffffffd008) 

    at debug.cpp:14 

14            cout << input[i];  

1: input[i] = 111 'o' 

(gdb) next 

13      for(i=strlen(input);i>=0;i--) { 

1: input[i] = 111 'o' 

(gdb) next 

Here we stepped through the loop, always looking at what input[i] was equal to. 

We can also watch a variable, which allows us to see the contents at any point when the memory 

changes. 



(gdb) watch input 

Watchpoint 2: input 

(gdb) continue 

Continuing. 

hello 

Watchpoint 2: input 

 

Old value = 

"\030\320\377\377\377\177\000\000\065\n@\000\000\000\000\000\210\373\240\031\

065\000\000\000\360\t@", '\000' <repeats 13 times>, 

"0\b@\000\000\000\000\000\000", <incomplete sequence \320> 

New value = 

"h\320\377\377\377\177\000\000\065\n@\000\000\000\000\000\210\373\240\031\065

\000\000\000\360\t@", '\000' <repeats 13 times>, 

"0\b@\000\000\000\000\000\000", <incomplete sequence \320> 

0x000000352067b82a in std::basic_istream<char, std::char_traits<char> >& 

std::operator>><char, std::char_traits<char> >(std::basic_istream<char, 

std::char_traits<char> >&, char*) () from /usr/lib64/libstdc++.so.6 

 

(gdb) continue 

Continuing. 

Watchpoint 2: input 

 

Old value = 

"h\320\377\377\377\177\000\000\065\n@\000\000\000\000\000\210\373\240\031\065

\000\000\000\360\t@", '\000' <repeats 13 times>, 

"0\b@\000\000\000\000\000\000", <incomplete sequence \320> 

New value = 

"he\377\377\377\177\000\000\065\n@\000\000\000\000\000\210\373\240\031\065\00

0\000\000\360\t@", '\000' <repeats 13 times>, "0\b@\000\000\000\000\000\000", 

<incomplete sequence \320> 

0x000000352067b82a in std::basic_istream<char, std::char_traits<char> >& 

std::operator>><char, std::char_traits<char> >(std::basic_istream<char, 

std::char_traits<char> >&, char*) () from /usr/lib64/libstdc++.so.6 

7. The where (or bt) Command 

The where (or bt) command prints a backtrace of all stack frames. This may not make much 

sense but it is useful in seeing where our program crashes. 

Let’s modify our program just a little so that it will crash:  

#include <iostream> 

#include <string.h> 

 

using namespace std; 

 

int main(int argc, char *argv[]){ 

 char *input = NULL; 

 int i = 0; 

 

 cin >> input; 

 

 for(i = strlen(input); i >= 0; i--){  



    cout << input[i]; 

 }  

 cout << endl; 

 

 return 0; 

} 

Here we've changed input to be a pointer to a char and set it to NULL to make sure it doesn’t 

point anywhere until we set it. Recompile and run gdb on it again to see what happens when it 

crashes.  

(gdb) r 

Starting program: /nfs/farm/classes/eecs/fall2013/eecs161-001/private/a.out 

hello 

 

Program received signal SIGSEGV, Segmentation fault. 

0x000000352067b826 in std::basic_istream<char, std::char_traits<char> >& 

std::operator>><char, std::char_traits<char> >(std::basic_istream<char, 

std::char_traits<char> >&, char*) () from /usr/lib64/libstdc++.so.6 

 

(gdb) where 

#0  0x000000352067b826 in std::basic_istream<char, std::char_traits<char> >& 

std::operator>><char, std::char_traits<char> >(std::basic_istream<char, 

std::char_traits<char> >&, char*) () from /usr/lib64/libstdc++.so.6 

#1  0x0000000000400943 in main (argc=1, 

    argv=0x7fffffffd008) at debug.cpp:11  

 

(gdb) 

 

We see at the bottom, two frames.  #1 is the top most frame and shows where we crashed. Use 

the up command to move up the stack. 
 

(gdb) up 

#1  0x0000000000400943 in main (argc=1, 

    argv=0x7fffffffd008) at debug.cpp:11 

11         cin >> input;  

 

(gdb) 

Here we see line #11  

11 cin >> input; 

The line where we crashed.  

Here are some more tutorials for the gdb: 

http://classes.engr.oregonstate.edu/eecs/summer2013/cs162-001/4-gdb.mp4 

http://www.cs.cmu.edu/~gilpin/tutorial/ 

https://sourceware.org/gdb/current/onlinedocs/gdb/ 

 
 

http://classes.engr.oregonstate.edu/eecs/summer2013/cs162-001/4-gdb.mp4
http://www.cs.cmu.edu/~gilpin/tutorial/
https://sourceware.org/gdb/current/onlinedocs/gdb/


(3 pts) Understanding Errors  
Here is a functional program that compares two strings supplied as command line 
arguments to see if they are equal.  If they are equal, it returns true, and if they are not 
equal, then it returns false.  Download the following program: is_equal.cpp. 
 

#include <iostream> 

using namespace std; 

 

bool is_equal(char *str1, char *str2) { 

   int i; 

   for(i=0; str1[i]!='\0' && str2[i]!='\0'; i++) 

      if(str1[i]!=str2[i]) 

         return false; 

          

   if(str1[i]!='\0' || str2[i]!='\0') 

      return false; 

 

   return true; 

} 

 

int main() { 

   char *str1=NULL, *str2=NULL; 

   str1=new char[256]; 

   str2=new char[256]; 

  

   cout << “enter string 1: ”; 

   cin >> str1; 

   cout << “enter string 2: ”; 

   cin >> str2; 

 

   cout << is_equal(str1, str2) << endl; 

 

   return 0; 

} 

 
Now, you are going to deliberately create errors, and record on a piece of paper what 
you notice about these errors.  For example, when you remove a semicolon from a 
line 12 in the program, then the compiler gives you an error on a few lines below, at 
the next statement, alarming you that you have a missing semicolon before the 
statement on line 14.  Perform each of these errors, and record your understanding of 
the error and why it is the error it is  After you make the error, restore the program 
back to functional before making another error!!! 
 
Syntax errors (What does the compiler say!!!)  

 Remove a semicolon from line 14. 

 Remove the curly brace from line 5. 

 Add an & to the str1 and str2 arguments in the call to is_equal() on line 27. 

 Remove the asterisk/splat from the char pointers str1 and str2 on line 18. 

 Remove the return type, bool, from the is_equal() function on line 5. 

 Remove one of the parameters in the is_equal() function on line 5. 

 Comment out line 6, and declare i in the for loop on line 7. 

http://classes.engr.oregonstate.edu/eecs/fall2017/cs161-001/labs/is_equal.cpp


Logic errors (What is the output!!!)  

 Put two asterisks/splats on the parameters of line 5, and put ampersand, &, in front 
of the arguments on line 27. 
 

Let’s use the gdb debugger…  If we were to have this type of error and didn’t know what 
is going on, where would be the first place you would look?  You should think to 
yourself, what are the values of str1 and str2 when the function is_equal() is called, i.e. 
not before the call, but after the call! 
 
Use the gdb debugger to set the appropriate breakpoint in the program (after the call to 
the is_equal() function but at the declaration of the local variables) and display the 
values of str1 and str2.  Are these what you expect? 
 
Make your changes back and look at what you are passing when the program is correct, 
rather than when you added the extra splat and ampersand. 
 

 Comment out line 11 and 12, and run with hell and hello as input. 
How would you use gdb to discover this error?   

 

 Comment out line 19 and 20, and run with any strings as input.  
How would you use gdb to discover this error?   
 

The above program allocates memory, but it does not free the memory. We will learn 
about a utility in Linux that allows us to view how much memory we have allocated and 
deallocated (freed) during a run of your program. You can run your program through this 

utility called valgrind. For example, type valgrind prog_name at the prompt. 
% valgrind str_equal 

 

Make sure this program doesn’t have any memory leaks using valgrind.  What 
statements do you need to add? 
 

(3 pts) Tracing Code (by printing and by hand): 

Below is working code that has bad variable names and indentation.  Tracing code 
can be done by using print statements (or a debugger) to view the contents of 
variables/arrays or by using a pen and paper to figure out what is happening. 

In the following code, first go through the code and fix all the indentation issues, and 
then, systematically figure out what the code is doing. You must add comments to the 
lines of code as you figure out what the code is doing.   
 
You can figure out what the code is doing by inserting print statements to check the 
contents of the variables/arrays, using the debugger, or tracing the code by hand using 
pen and paper.  You can download the mystery code from here: mystery.cpp 

 

http://classes.engr.oregonstate.edu/eecs/fall2017/cs161-001/labs/mystery.cpp


(2 pts) Command-Line arguments: 

Take the is_equal.cpp program from above and modify it so that it gets two strings from 
the user as command-line arguments, rather than prompting the user for input.  For 
instance, the user should be able to run the program as follows: 

a.out hello hi 

Remember, the command line arguments are in a 2-d array, argv, and each one 
dimensional array is just a C-style string, i.e. argv[0] is the name of the executable used 
to run the program, which would be “a.out” in this case. 
 
You will need to add int argc and char *argv[] as parameters in main(). 
 
 
Extended Learning (Lab 9) Implement Towers of Hanoi 

First, you can implement this is using a static 2-D array with 3 columns for the 3 
posts, and you can initialize the array with the numbers 1, 2, and 3 in the first 
column to represent the initial state of the game.  The goal is to print out the board 
after each move in the game, seeing the following output.  Example with two disks: 

1  0  0 
2  0  0 
---------- 
0  0  0 
2  0  1 
---------- 
0  0  0 
0  2  1 
---------- 
0  1  0 
0  2  0 
---------- 

 
 
Begin by designing these two functions, towers() and print_array().  To help you 
out, your towers() function will be recursive with the following prototype: 
 

void towers(int disks, int b[][COLS], int from_col, int to_col, int spare); 
 
Here is an outline of the recursive towers function: 
 

If(number of disks is >= 1) 
    Call Towers with (disks-1, b, from_col, spare, to_col) 
    Move the disk 
    Print the board 
    Call Towers with (disks-1, b, spare, to_col, from_col) 


