• Graphs are a formal description of a wide range of situations
 • most common example: road map
 ■ in graph terms, intersections are nodes
 ■ roads are edges
 • sometimes graphs are directed (one-way street)
 • sometimes edges are weighted with some cost
 ■ e.g., speed limit
 • look at:
 ■ basic concepts
 ■ methods for storing graphs
 ■ how to use and manipulate using algorithms
 ■ e.g., DFS, BFS
 ■ spanning trees (no cycles in graph)
 ■ shortest path

• Graph Background and Terminology
 • formally, a graph is an ordered pair
 ■ \(G = (V, E) \)
 • of two sets represented the nodes or vertices of the graph and the edges of the graph
 ■ \(V \) = vertices
 ■ \(E \) = edges
 • often talk of “traveling” an edge between vertices A and B
 ■ “traversing” from A to B
 ■ “moving” from A to B
 • normally just write the two node labels as shorthand for an edge
 ■ So AB represents edge A→B
 ■ B is adjacent to A

• Graphs can be either directed or undirected
 • undirected graph (or just “graph”)
 ■ has edges that can be traversed in any direction
 ■ an edge is a set containing labels of nodes on ends of edge
 • directed graph (aka digraph)
 ■ edges can be traversed in only one direction
 ■ set of edges will have ordered pairs
 ■ first item is where edge starts
 ■ second item is where edge ends

• Normally draw graphs instead of defining their sets
 ■ circles = nodes
 ■ lines = edges
 ■ node names inside circles
 ■ use arrows for directed graphs
 ■ E.g.,

![Figure 8.1A](image1.png) ![Figure 8.1B](image2.png)

• Terminology
 ■ complete graph - an edge between every pair of nodes
 ■ N nodes \(\Rightarrow (N^2 - N) / 2 \) edges
 ■ (excluding loops)
 ■ complete digraph has an edge allowing traversal b/t every pair of nodes
 ■ N nodes \(\Rightarrow N^2 - N \) edges
 ■ (twice as many edges)
 ■ subgraph \((V_s, E_s) \) of graph \((V,E) \) is one that has a subset of vertices
- \((V_s \subseteq V)\)
- \((E_s \subseteq E)\)
- only edges that are candidates for \(E_s\) must contain both nodes in \(V_s\)

- **Path** between two nodes of graph or digraph is a sequence of edges that can be traveled consecutively w/out passing through any node more than once
 - path b/t A and B
 - start at A
 - traverse set of edges until reaches B
 - without going through any node 2x
 - path has a length:
 - number of edges that make up the path
 - path AB, BC, CD, DE has length 4
 - **Cycle** - path that starts and ends at same node

- **Weighted Graph** - each edge has a value (weight) associated with it
 - when drawing, weights written near edge
 - formally, weight is 3rd component in set of edge or ordered pair (now triplet)
 - when working with weighted graphs, must consider weights during traversal
 - cost
 - path through weight graph has cost for traversing each edge
 - e.g. P1 has 5 edges and cost 24
 - P2 has 3 edges and cost 36
 - P1 is “shorted” because it costs less.. (even though path length is longer)

- **Connected** - graph or digraph is “connected” if there is at least one path b/t every pair of nodes
- **Acyclic Graph** - has no cycles
- **Unrooted Tree** - graph that is connected and acyclic-
 - no single node is the root..

Data Structures for Graphs

- we can store graphs or digraphs in two ways:
 - adjacency matrix
 - adjacency list

- **Adjacency Matrix**
 - gives us ability to quickly access edge information
 - but if graph is far from being complete, then there will be empty space in array

- **Adjacency List**
 - uses space that is proportional to the number of edges in graph
 - but time to access will be greater
 - no clear benefit to either method
 - adjacency list- useful when graph has many nodes but few edges
 - uses less space
 - adjacency matrix- useful when graph has few nodes or when nearly complete
 - not that big

Adjacency Matrix
- adjacency matrix for graph \(G = (V,E)\) with \(|V| = N\) will be stored in a 2D array of size \(N \times N\)
 - each location \([i,j]\) specifies an edge between node \(v_i\) and \(v_j\)
 - if 0, no edge
 - if 1, edge b/t nodes
 - allows us to do digraphs too...
 - for weighted graphs, value used instead of 0 and 1
 - with inf indicating no edge
 - diagonal elements all 0
 - (no edge b/t node and itself)
- **Adjacency list**
 - adjacency list for graph \(G = (V,E) \) with \(|V| = N \) will be stored as a 1D array of size \(N \) with each location being a pointer to a linked list
 - there will be one list for each node
 - list will have one entry for each adjacent node
 - for weighted graphs and digraphs
 - list entries have an additional field to hold weight of edge.
FIGURE 8.1A
The graph $G = ([1, 2, 3, 4, 5], \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)\})$

FIGURE 8.3A
The adjacency list for the graph in Fig. 8.1(a)

FIGURE 8.1B
The directed graph $G = ([1, 2, 3, 4, 5], \{(1, 2), (1, 3), (2, 1), (3, 2), (4, 3), (4, 5), (5, 2), (5, 4)\})$

FIGURE 8.3B
The adjacency list for the graph in Fig. 8.1(b)