6.5 Pushdown Automata

- deterministic pushdown automaton is very much like a deterministic finite automaton
 - but with addition of storage capability
 - storage is in the form of a stack
 - only element of storage that we can exam is the one last put on the stack (on top)
 - transition now based on:
 - current state
 - input symbol
 - symbol on top of stack
 - usually don’t represent PDA as graphs
 - but instead write out values of transition function
 - l is always initial state...
 - F is accepting state
 - empty stack represented by

- formally, a PDA is a 7-tuple
 \((Q, \Sigma, \Gamma, q_0, T, Z, \delta)\)

 - \(Q\) is finite set of states
 - \(\Sigma\) is alphabet of input and stack symbols
 - \(\Gamma\) is stack alphabet
 - \(q_0\) is starting state (one)
 - \(T\) is subset of \(Q\) giving accepting states
 - \(Z\) is subset of \(\Gamma\) and identifies initial stack symbol
 - \(\delta\) is transition function
 - of form: \(\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow Q \times \Gamma^*\)
 - \(\delta(s, a, b) = (s', x)\)
 - \(s = \) current state
 - \(a = \) current input symbol
 - can also be \(\lambda\) (indicating input not consumed)
 - \(b = \) is symbol at top of stack
 - always removed from stack
 - if it needs to be kept on stack, then it must be part of \(x\)
 - \(\varepsilon = \) empty stack
 - \(s' = \) new state
 - \(x = \) zero or more symbols that replace \(b\) at top of stack
 - in general, transitions take on four forms:
 - \(\delta(s, *, b) = (s', b)\) \(//\) does not change stack
 - \(\delta(s, *, b) = (s', xb)\) \(//\) adds \(x\) to the stack
 - \(\delta(s, *, b) = (s', \lambda)\) \(//\) removes \(b\) from stack
 - \(\delta(s, *, b) = (s', x)\) \(//\) replaces \(b\) with \(x\)

- Examples

 - **M1** : (accepts strings of form \(a^n b^n ; n \geq 1\))
 - \(Q = \{1, 2, 3\}\)
 - \(\Sigma = \{a, b, \lambda\}\)
 - \(\Gamma = \{\lambda, A, \varepsilon\}\)
 - \(q_0 = 1\)
 - \(T = 3\)
 - \(Z = \varepsilon\)
 - \(\delta:\)
 - \(\delta(1, a, \varepsilon) = (1, A\varepsilon)\)
 - \(\delta(1, a, A) = (1, AA)\)
 - \(\delta(1, b, A) = (2, \lambda)\)
\[\delta(2, b, A) = (2, \lambda) \]
\[\delta(2, \lambda, \varepsilon) = (3, \varepsilon) \]

L2 = \{ w : \#a(w) = \#b(w) \}
- equal number of a and b in string
- (order doesn’t matter)

- \(Q = \{ 1, 2 \} \)
- \(\Sigma = \{ a, b, \lambda \} \)
- \(\Gamma = \{ \lambda, A, B, \varepsilon \} \)
- \(q_0 = 1 \)
- \(T = 2 \)
- \(Z = \varepsilon \)

- **\(\delta \):**
 - \(\delta(1, a, \varepsilon) = (1, A\varepsilon) \)
 - \(\delta(1, b, \varepsilon) = (1, B\varepsilon) \)
 - \(\delta(1, a, A) = (1, AA) \)
 - \(\delta(1, b, B) = (1, BB) \)
 - \(\delta(1, a, B) = (1, \lambda) \)
 - \(\delta(1, b, A) = (1, \lambda) \)
 - \(\delta(1, \lambda, \varepsilon) = (2, \varepsilon) \)

 - every time we see a,
 - if A on top of stack (or stack empty), push another A
 - if B on top of stack, pop B off
 - every time we see b,
 - if B on top of stack (or stack empty), push another B
 - if A on top of stack, pop A off
 - if out of input symbols and stack empty, move to accepting state.
a, ϵ -> A
a, A -> AA
a, B -> λ
b, ϵ -> B
b, B -> BB
b, A -> λ

λ, ϵ -> ϵ