• problems in the class NP are important to a number of applications
 • solution is of interest
 • NP problems do not have polynomial time algorithms that can produce an exact solution
 • must consider alternative algorithms that can produce reasonably good answers
 • some cases, algo will find optimal answer, but cannot be guaranteed
 • discussed depth-first and breadth-first traversal methods
 • DF uses recursion and stacks
 • Backtracking algorithms rely on recursion
 • make recursive call when there is a choice
 • saves state
 • if choice fails, can return
 • BF uses queue
 • Branch and Bound use a queue to hold problem states
 • have promise to solution
 • (removed from queue and examined)
 • promising choices added to queue

• probabilistic algorithms: sometimes better to guess than to figure out correct option
 • four classifications of probabilistic algos:
 • 1) numerical
 • 2) Monte Carlo
 • 3) Las Vegas
 • 4) Sherwood
 • common characteristic => produce better results the longer they run

• dynamic programming
 • keep track of previous information
 • e.g., fibonacci

• 11.1 Greedy Algorithms
 • Have seen greedy algorithms: e.g., minimum spanning tree algo, shortest path
 • look at number of greedy algos to approximate optimal solution for problems in NP
 • again, may not find exact, optimal solution
 • look at approximation algorithms for problems discussed:

• 11.1.1 Traveling salesman approximations
 • cannot just apply shortest path algorithm to solve this
 • can use Djikstra’s to find shortest path b/t two nodes,
 • but doesn’t visit every node in graph
 • we can use this general greedy technique to find an approximate algorithm
 • cost of traveling b/t cities represented by adj matrix
 • E.g.,
Algorithm:
- go through set of edges, pick them in order of increasing weight
- not concerned about forming a path
- make sure edges added to path meet 2 criteria:
 1) do not form a cycle with other edges (unless all nodes chosen)
 2) not the third edge connected to some node

 e.g.,
 - first choose edge (3,5) w/ weight of 1
 - then choose (5,6)
 - next edge would be (3,6) but reject b/c forms a cycle that is not complete
 - add edge (4,7)
 - and (2,7)
 - next edge would be (1,5) but rejected because tried edge to node 5
 - add edge (1,6)
 - then (1,4)
 - last edge (2,3)
 - gives us path 1, 4, 7, 2, 3, 5, 6, 1 w/ length 53..
 - optimal path:
 - path of 1, 4, 7, 2, 5, 3, 6, 1 w/ length 41

11.1.2 Bin Packing
- technique to approximate bin packing?
 - use first fit
 - for each object: look at the bins in order until one is found that has enough space to hold the object.
 - E.g.,
 - set of objects with sizes
 - \{ 0.5, 0.7, 0.3, 0.9, 0.6, 0.8, 0.1, 0.4, 0.2, 0.5 \}
 - how to pack bins?
 - bin 1: [0.5, 0.3, 0.1]
 - bin 2: [0.7, 0.1]
 - bin 3: [0.9]
 - bin 4: [0.6, 0.4]
 - bin 5: [0.8]
 - bin 6: [0.5]
 - optimal solution?
 - 5 bins
 - bin 1: [0.9, 0.1]
 - bin 2: [0.8, 0.2]
 - bin 3: [0.7, 0.3]
 - bin 4: [0.6, 0.4]
 - bin 5: [0.5, 0.5]
another approximation?

decreasing first fit
- objects first sorted in decreasing order
- then begin first fit
 - sometimes better than regular first fit
 - sometimes optimal
 - sometimes worse than regular first fit!
 - (can come up with counter example)

11.1.3 Backpack approximation
- create a sorted list of objects based on the ratio of worth to object size
- E.g.,
 - objects = { [25, 50], [20, 80], [20, 50], [15, 45], [30, 105], [35, 35], [20, 10], [10,45] }
 - worth ratios: (2, 4, 2.5, 3, 3.5, 1, 0.5, 4.5)
 - sorting by worth ratio => [10,45], [20, 80], ...
- begin filling backpack using objects in the order of the sorted list
 - if the next object will not fit, skip and continue down the list.
- e.g., backpack of size 80,
 - able to fit first 4 objects for total size of 75 and worth of 275
 - not optimal.. 1st three and 5th object would yield 80 and 280.

11.1.4 Subset Sum
- similar to backpack..
- skipped...

11.1.5 Graph coloring
- unique problem
 - has been shown that getting an approximate coloring that is close to optimal is as complex as getting the optimal coloring.
 - best approx algorithm that runs in poly time will use more than twice as many colors as optimal!
 - has been shown that if there was a poly time algo that could color any graph with no more than twice as many as optimal,
 - then P = NP
- simple approximation:
 - use sequential coloring method
 - `sequentialColoring(G)`
 - // G is graph to be colored
 - for i = 1 to N
 - c = 1
 - while there is a node in G adjacent to node_i that is colored c, do
 - c = c + 1
 - color node_i with c
- approach will use C colors where C is 1 greater than the degree of the graph
 - (degree is largest number of edges leaving one node)
 - possible to do better, but pretty darn advanced.. (beyond scope of class)
11.2 Backtracking
- E.g., solving a maze
 - note whenever you make a choice between two directions
 - if you end up at a dead end
 - return to your choice and take a different path
 - return further back once all paths exhausted.
 - this technique to solve a maze is called **backtracking**
 - problem state is saved whenever a choice is made
 - if choice does not lead to solution,
 - restore problem state
 - try another choice
- Consider N-Queens
 - How to place N queens on an N×N board such that no queen will attack another.
 - 4 is smallest value of N for which there is a solution
 - can develop state-space tree that describes 4-Queen problem
 - can never been more than one queen per row or column
 - in state space tree,
 - each level represents possible places where each queen can be placed for one row on the board
 - root will have 4 children
 - => 1 node for each column
 - each child will have 4 nodes representing 4 columns where queen can be placed in row 2
 - not concerned with whether placement makes sense.
 - just describing entire problem space
 - path from root to leave gives us placement of four queens on the board
 - 256 leaves in tree
 - part of state space tree:
 - path with arrows shows route to solution
- we could use **depth first search** to solve the 4-queens problem
 - when a leaf is reached, the board will be checked for validity
 - a lot more work is done than necessary
 - we search part of tree that are totally invalid
 - E.g., going from 1,1 to 2,1, => need to go any further. No it’s invalid
 - saves us time.
 - **essence of how backtracking backtracking differs from DFS**
 - If a node in state-space tree could **never** lead to a solution,
then we consider it **nonpromising**
backtracking stops recursing when it reaches a nonpromising state

Algorithm:
- \texttt{Queens}(\textit{i})
 - if \textit{i} > \textit{N} then
 - output board
 - else
 - for \textit{j} = 1 to \textit{N}
 - \texttt{board}[\textit{i}] = \textit{j}
 - if no attacks
 - \texttt{Queens}(i+1)

Generic form of algorithm:
- \texttt{SearchSpace}(\textit{i}):
 - if there is a solution
 - output the solution
 - else
 - for every possible next step:
 - if the step is promising:
 - \texttt{SearchSpace}(i+1)

key is determining whether a state is promising.
- easy for N-Queens
- more complex for optimization problems

- How can **backtracking** be applied to Sudoku?

11.3 Branch and Bound
- similar to backtracking, but uses BFS instead of DFS
 - uses a queue instead of a stack
- B & B calculates a number called a bound
 - use it to determine if node is promising
 - I.e., if bound is not better than the best solution so far
 - no need to expand the node
 - cannot lead to improved solution
- used for optimization problems
 - “better” might mean larger solution to max problems
 - e.g., backpack
 - “better” => smaller solution for job scheduling
- can be improved by using priority queue..
- E.g., backpack problem
 - details omitted..
 - bounds => possible total size and worth
 - **non promising** if new size brings total over limit
 - also **non promising** if new worth is not greater than the best worth so far.
 - => those nodes will be omitted..