11.4 Probabilistic algorithms
- take a radically different approach from deterministic algorithms explored so far
 - in some applications, probabilistic algorithms provide results that cannot be achieved deterministically

11.4.1 Numerical Probabilistic Algos
- calculate an approximate result for some mathematical problem
 - the longer the algorithm runs
 - the greater the precision
- e.g., throwing darts at a board to estimate pi
 - choose random (x,y) points in square
 - count how many land in circle (inscribed in square)
 - area of circle πr^2
 - area of square $(2r)^2 = 4r^2$
 - ratio of circle to square $\Rightarrow \pi / 4$
 - if number truly random, they will be evenly spaced across square
 - π can estimated by $4 * \frac{c}{s}$
 - c is number of darts that fall in circle
 - s is number of darts through
 - \Rightarrow more darts, closer to π

Monte Carlo integration
- for a continuous function f
 - area under curve f is the integral of that function
 - some functions \Rightarrow difficult or impossible to determine integral
 - but can approximate using Monte Carlo integration
 - randomly throw darts at 1 x 1 board with function drawn in
 - count how many land under curve
 - number below curve / num thrown \Rightarrow approx area
 - more darts \Rightarrow better precision

```
integrate(f, dartCount):
  // $f =$ function to integrate
  // $\text{dartCount} =$ number of darts to “throw”
  hits = 0
  for $i = 1 : \text{numDarts}$:
    $x = \text{random}(0,1)$
    $y = \text{random}(0,1)$
    if $y \leq f(x)$:
      hits++
  return hits / dartCount
```

Probabilistic Counting
- skipped
- same basic idea, applied to slightly different problem

11.4.2 Monte Carlo Algorithms
- will always give an answer,
 - probability that answer will be correct increases the longer the algo runs
 - can also return incorrect answer
 - such algos called p-correct when they return a correct answer with prob p ($0.5 < p < 1$)
 - consistent: more than 1 correct answer for any given input
 - MC algorithm returns same correct answer each time.
- Two ways to improve MC algo:
 - 1) increase amount of time it runs
 - 2) call it multiple times
In this case, make several calls to algorithm
choose answer that appears most frequently
- improves algorithm..

MC majority element
- find the majority element in an array
 - majority element- if one element is stored in more than half of array locations
 - if solved via brute force, would take $O(N^2)$

MC algo:

```
Majority (list, N):
  //list of elements of size N
  choice = random(1, N)
  count = 0
  for i = 1 : N:
    if list[i] == list[choice]:
      count++
  if count > N/2:
    return true
  else:
    return false
```

- **Monte Carlo Prime Testing**
 - skipped.

11.4.3 Las Vegas Algorithms
- never return wrong answer
- but may return no answer
 - longer the algorithm runs, the higher the prob of success
- basic idea:
 - randomly make decision
 - check to see if successful answer
- can use in 8-queens problem:
 - place queens on board s.t. each new queen is placed randomly on next row
 - if cannot place queen on a row, just gives up and signal failure
 - (recursive version backs up and tries to fix)
 - LV version takes about 55 passes to solve
 - backtracking takes 100+ passes

11.4.4 Sherwood Algorithms
- always gives an answer
- answer always correct
- applied to algorithms where best, avg, and worst cases differ significantly
- **Introduce randomness** to help reduce gap b/t best and worst
 - E.g., how to choose pivot for quicksort
 - worst case: if list was already sorted AND pick smallest element
 - instead => pick random pivot element
 - (would not eliminate chance of worst case, but reduce its likelihood)
 - NOTE: will also reduce likelihood of best case (median)

- can apply to searching as well.
 - Sherwood “binary search”:
 - random pick location b/t start and end
 - (not necessarily start + end / 2)
 - sometimes better, sometimes worse
11.5 Dynamic Programming

- basic idea
 - reduce time of worst case
 - increase time of best case
 - (cannot be predetermined)

- basic idea: break problem into simpler subproblems
 - solve each subproblem only once
 - store the result (do not recalculate)

- four applications of dynamic programming:
 - 1) improve calculation efficiency of recursive algos
 - 2) deciding order of matrix must..
 - 3) shortest pairs for all nodes in graph
 - 4) approx solution to backpack problem

- E.g., #1
 - Fibonacci recursion
 - E.g., calculate 10th fib number: fibb(9) + fibb(8)
 - usually just “throw away” numbers calculated
 - traditional method:
 - calculate 8th fib # as part of determining 9th
 - but throw the numbers away
 - E.g., fibb(6) recursion tree:

 ![Recursion Tree for fibb(6)](image)

 - fibb(4) called 2x
 - fibb(3) called 3x

- for 10th fibb #,
 - fibb(3) would get called 21 times
- another method?
 - calculate from the bottom up

```python
def fibb(N):
    if N == 1 or N == 2:
        return 1
    else:
        val[1] = 1
        val[2] = 1
        for i = 3 : N:
            val[i] = val[i-1] + val[i-2]
```

- E.g., #1
 - Fibonacci recursion
 - E.g., calculate 10th fib number: fibb(9) + fibb(8)
 - usually just “throw away” numbers calculated
 - traditional method:
 - calculate 8th fib # as part of determining 9th
 - but throw the numbers away
 - E.g., fibb(6) recursion tree:

 ![Recursion Tree for fibb(6)](image)

 - fibb(4) called 2x
 - fibb(3) called 3x

- for 10th fibb #,
 - fibb(3) would get called 21 times
- another method?
 - calculate from the bottom up

```python
def fibb(N):
    if N == 1 or N == 2:
        return 1
    else:
        val[1] = 1
        val[2] = 1
        for i = 3 : N:
            val[i] = val[i-1] + val[i-2]
```
- return val[N]

- more complex example?
 - binomial coefficients
 - \(\binom{n}{k} \) (n choose k)

- 11.5.2 Dynamic Matrix Mult
 - skipped

- 11.5.3 All-pairs shortest Path algorithm
 - skipped

- 11.5.4 Dynamic programming for Backpack problem
 - skipped.