Structured Prediction
(structured perceptron, HMM, structured SVM)

Professor Liang Huang

(Chap. 17 of CIML)
Structured Prediction

- **binary classification**: output is binary
- **multiclass classification**: output is a number (small # of classes)
- **structured classification**: output is a structure (seq., tree, graph)
 - part-of-speech tagging, parsing, summarization, translation
 - exponentially many classes: search (inference) efficiency is crucial!
Generic Perceptron

- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes
Perceptron: from binary to structured

Binary classification

- 2 classes

Multiclass classification

- Constant # of classes

Structured classification

- Exponential # of classes

- Hard

- Update weights if $y \neq z$

```
the man bit the dog
```

```
DT NN VBD DT NN
```
From Perceptron to SVM

1959 - Rosenblatt invention
1962 - Novikoff proof
1964 - Vapnik invention
1969 - fall of USSR
1971 - Chervonenkis
1997 - Cortes/Vapnik SVM
1999 - Freund/Schapire voted/avg: revived
2001 - Lafferty+ CRF
2002 - Collins structured
2003 - Crammer/Singer MIRA
2004 - Tsochantaridis struct. SVM
2005 - McDonald+ structured MIRA
2006 - Singer group aggressive
2007-2010 - Singer group Pegasos
2009 - online approx.
2010 - subgradient descent
2012 - minibatch

batch

+max margin
+kernels
+soft-margin

online

1964 - Vapnik
1969 - Chervonenkis

1959 - Rosenblatt invention
1962 - Novikoff proof

conservative updates

inseparable case

multinomial logistic regression (max. entropy)

AT&T Research

ex-AT&T and students
Multiclass Classification

- one weight vector ("prototype") for each class:
 \[w = (w^{(1)}, w^{(2)}, \ldots, w^{(M)}) \],

- multiclass decision rule:
 \[\hat{y} = \text{argmax}_{z \in 1 \ldots M} w^{(z)} \cdot x \]
 (best agreement w/ prototype)

Q1: what about 2-class?
Q2: do we still need augmented space?
Multiclass Perceptron

- on an error, penalize the weight for the wrong class, and reward the weight for the true class
Convergence of Multiclass

update rule:

\[w \leftarrow w + \Delta \Phi(x, y, z) \]

separability:

for all \(\exists u, \text{ s.t. } \forall (x, y) \in D, z \neq y \)

\[u \cdot \Delta \Phi(x, y, z) \geq \delta \]

where \(w^{(i)} \) is used to calculate the functional margin for training example with label \(i \);

for a given training example \(x \) and a label \(y \), we define feature map function \(\Phi \) as

\[\Phi(x, y) = (0^{(1)}, \ldots, 0^{(y-1)}, x, 0^{(y+1)}, \ldots, 0^{(M)}) \]

such that \(w \cdot \Phi(x, y) = w^{(y)} \cdot x \).

We also define that, with a given training example \(x \), the difference between two feature vectors for labels \(y \) and \(z \) as \(\Delta \Phi \):

\[\Delta \Phi(x, y, z) = \Phi(x, y) - \Phi(x, z) \]
Example: POS Tagging

- gold-standard: DT NN VBD DT NN y
 the man bit the dog x

- current output: DT NN NN DT NN z
 the man bit the dog x

- assume only two feature classes
- tag bigrams
 $\Phi(x, y) = \{(\langle s \rangle, DT): 1, (DT, NN): 1, ..., (NN, \langle s \rangle): 1, (DT, the): 1, ..., (VBD, bit): 1, ..., (NN, dog): 1\}$
 $\Phi(x, z) = \{(\langle s \rangle, DT): 1, (DT, NN): 1, ..., (NN, \langle s \rangle): 1, (DT, the): 1, ..., (NN, bit): 1, ..., (NN, dog): 1\}$

- word/tag pairs
 $\Phi(x, y) - \Phi(x, z)$
 $\Phi(x, y) - \Phi(x, z)$

- weights ++: (NN, VBD) (VBD, DT) (VBD, bit)
- weights --: (NN, NN) (NN, DT) (NN, bit)
Structured Perceptron

Inputs: Training set \((x_i, y_i)\) for \(i = 1 \ldots n\)

Initialization: \(W = 0\)

Define: \(F(x) = \arg\max_{y \in \text{GEN}(x)} \Phi(x, y) \cdot W\)

Algorithm: For \(t = 1 \ldots T, i = 1 \ldots n\)

\[z_i = F(x_i) \]

If \((z_i \neq y_i)\)

\[W \leftarrow W + \Phi(x_i, y_i) - \Phi(x_i, z_i) \]

Output: Parameters \(W\)
Inference: Dynamic Programming

If $y \neq z$, update weights.

Exact inference.
Complete this Python code implementing the Viterbi algorithm for part-of-speech tagging. It should print a list of word/tag pairs, e.g. [('a', 'D'), ('can', 'N'), ('can', 'A'), ('can', 'V'), ('a', 'D'), ('can', 'N')].

```python
from collections import defaultdict

best = defaultdict(lambda : defaultdict(float))
best[0]["<s>"] = 1
back = defaultdict(dict)

words = "<s> a can can can a can </s>".split()

tags = {"a": ["D"], "can": ["N", "A", "V"], "</s>": ["</s>"]}  # possible tags for each word
ptag = {"D": {"N": 1}, "V": {"</s>": 0.5, "D":0.5}, ... }  # ptag[x][y] = p(y | x)
pword = {"D": {"a": 0.5}, "N": {"can": 0.1}, ... }  # pword[x][w] = p(w | x)

for i, word in enumerate(words[1:], 1):
    for tag in tags[word]:
        for prev in best[i-1]:
            score = best[i-1][prev] * ptag[prev][tag] * pword[tag][word]
            if score > best[i][tag]:
                best[i][tag] = score
                back[i][tag] = prev

def backtrack(i, tag):
    if i == 0:
        return []
    return backtrack(i-1, back[i][tag]) + [(words[i], tag),]

print backtrack(len(words)-1, "</s>")[::-1]
```

Q: what about top-down recursive + memoization?
Efficiency vs. Expressiveness

- the **inference** (argmax) must be efficient
 - either the search space $\text{GEN}(x)$ is small, or factored
 - features must be local to y (but can be global to x)
 - e.g. bigram tagger, but look at all input words (cf. CRFs)
Averaged Perceptron

Inputs: Training set \((x_i, y_i)\) for \(i = 1 \ldots n\)

Initialization: \(W_0 = 0\)

Define: \(F(x) = \arg\max_{y \in \text{GEN}(x)} \Phi(x, y) \cdot W\)

Algorithm: For \(t = 1 \ldots T, i = 1 \ldots n\)
\[z_i = F(x_i) \]
If \((z_i \neq y_i)\)
\[W_{j+1} \leftarrow W_j + \Phi(x_i, y_i) - \Phi(x_i, z_i) \]

Output: Parameters \(W = \sum_j W_j\)

- more stable and accurate results
- approximation of voted perceptron
 (Freund & Schapire, 1999)
Averaging Tricks

- Daume (2006, PhD thesis)

Algorithm AVERAGED-STRUCTURED-PERCEPTRON($x_{1:N}, y_{1:N}, I$)

1: $w_0 \leftarrow \langle 0, \ldots, 0 \rangle$
2: $w_a \leftarrow \langle 0, \ldots, 0 \rangle$
3: $c \leftarrow 1$
4: for $i = 1 \ldots I$ do
5: for $n = 1 \ldots N$ do
6: $\hat{y}_n \leftarrow \arg \max_{y \in Y} w_0^T \Phi(x_n, y_n)$
7: if $y_n \neq \hat{y}_n$ then
8: $w_0 \leftarrow w_0 + \Phi(x_n, y_n) - \Phi(x_n, \hat{y}_n)$
9: $w_a \leftarrow w_a + c\Phi(x_n, y_n) - c\Phi(x_n, \hat{y}_n)$
10: end if
11: $c \leftarrow c + 1$
12: end for
13: end for
14: return $w_0 - w_a / c$

Figure 2.3: The averaged structured perceptron learning algorithm.
Do we need smoothing?

- smoothing is much easier in discriminative models
- just make sure for each feature template, its subset templates are also included
 - e.g., to include \((t_0 w_0 w_{-1})\) you must also include
 - \((t_0 w_0) (t_0 w_{-1}) (w_0 w_{-1})\)
 - and maybe also \((t_0 t_{-1})\) because \(t\) is less sparse than \(w\)
Geometry of Convergence Proof pt 1

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Delta \Phi(x, y, z)\)
6: until converged

exact inference

update weights
if \(y \neq z\)

perceptron update:
\[
w^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z)
\]

\[
u \cdot w^{(k+1)} = u \cdot w^{(k)} + u \cdot \Delta \Phi(x, y, z) \geq \delta
\]

(by induction)

(part 1: upperbound)
Geometry of Convergence Proof pt 2

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Delta \Phi(x, y, z)\)
6: until converged

violation: incorrect label scored higher

perceptron update:
\[
w^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z)
\]

\[
\|w^{(k+1)}\|^2 = \|w^{(k)} + \Delta \Phi(x, y, z)\|^2
\]

\[
= \|w^{(k)}\|^2 + \|\Delta \Phi(x, y, z)\|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z)
\]

\[
\leq R^2
\]
diameter

by induction: \(\|w^{(k+1)}\|^2 \leq kR^2\)

parts 1+2 => update bounds:

\[
k \leq \frac{R^2}{\delta^2}
\]
Experiments
Experiments: Tagging

- (almost) identical features from (Ratnaparkhi, 1996)
- trigram tagger: current tag t_i, previous tags t_{i-1}, t_{i-2}
- current word w_i and its spelling features
- surrounding words w_{i-1} w_{i+1} w_{i-2} w_{i+2}...

<table>
<thead>
<tr>
<th>Method</th>
<th>Error rate/%</th>
<th>Numits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perc, avg, cc=0</td>
<td>2.93</td>
<td>10</td>
</tr>
<tr>
<td>Perc, noavg, cc=0</td>
<td>3.68</td>
<td>20</td>
</tr>
<tr>
<td>Perc, avg, cc=5</td>
<td>3.03</td>
<td>6</td>
</tr>
<tr>
<td>Perc, noavg, cc=5</td>
<td>4.04</td>
<td>17</td>
</tr>
<tr>
<td>ME, cc=0</td>
<td>3.4</td>
<td>100</td>
</tr>
<tr>
<td>ME, cc=5</td>
<td>3.28</td>
<td>200</td>
</tr>
</tbody>
</table>
Experiments: NP Chunking

- **B-I-O scheme**

 Rockwell International Corp. **B** **I** **O**

 's Tulsa unit said it signed **B** **I** **O** **O**

 a tentative agreement...

- **features:**
 - unigram model
 - surrounding words and POS tags

<table>
<thead>
<tr>
<th>Current word</th>
<th>w_i</th>
<th>& t_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>w_{i-1}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Word two back</td>
<td>w_{i-2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Next word</td>
<td>w_{i+1}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Word two ahead</td>
<td>w_{i+2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Bigram features</td>
<td>w_{i-2}, w_{i-1}</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>w_{i-1}, w_i</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>w_i, w_{i+1}</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>w_{i+1}, w_{i+2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Current tag</td>
<td>p_i</td>
<td>& t_i</td>
</tr>
<tr>
<td>Previous tag</td>
<td>p_{i-1}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Tag two back</td>
<td>p_{i-2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Next tag</td>
<td>p_{i+1}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Tag two ahead</td>
<td>p_{i+2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Bigram tag features</td>
<td>p_{i-2}, p_{i-1}</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>p_{i-1}, p_i</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>p_i, p_{i+1}</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>p_{i+1}, p_{i+2}</td>
<td>& t_i</td>
</tr>
<tr>
<td>Trigram tag features</td>
<td>p_{i-2}, p_{i-1}, p_i</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>p_{i-1}, p_i, p_{i+1}</td>
<td>& t_i</td>
</tr>
<tr>
<td></td>
<td>p_i, p_{i+1}, p_{i+2}</td>
<td>& t_i</td>
</tr>
</tbody>
</table>
Experiments: NP Chunking

- results

<table>
<thead>
<tr>
<th>Method</th>
<th>F-Measure</th>
<th>Numits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceptron, avg, cc=0</td>
<td>93.53</td>
<td>13</td>
</tr>
<tr>
<td>Perceptron, noavg, cc=0</td>
<td>93.04</td>
<td>35</td>
</tr>
<tr>
<td>Perceptron, avg, cc=5</td>
<td>93.33</td>
<td>9</td>
</tr>
<tr>
<td>Perceptron, noavg, cc=5</td>
<td>91.88</td>
<td>39</td>
</tr>
<tr>
<td>Max-ent, cc=0</td>
<td>92.34</td>
<td>900</td>
</tr>
<tr>
<td>Max-ent, cc=5</td>
<td>92.65</td>
<td>200</td>
</tr>
</tbody>
</table>

- (Sha and Pereira, 2003) trigram tagger
 - voted perceptron: 94.09% vs. CRF: 94.38%
Structured SVM

- structured perceptron: \(w \cdot \Delta \phi(x,y,z) > 0 \)
- SVM: for all \((x,y)\), functional margin \(y(w \cdot x) \geq 1 \)
- structured SVM version 1: simple loss
 - for all \((x,y)\), for all \(z \neq y \), margin \(w \cdot \Delta \phi(x,y,z) \geq 1 \)
 - correct \(y \) has to score higher than any wrong \(z \) by 1
- structured SVM version 2: structured loss
 - for all \((x,y)\), for all \(z \neq y \), margin \(w \cdot \Delta \phi(x,y,z) \geq \ell(y,z) \)
 - correct \(y \) has to score higher than any wrong \(z \) by \(\ell(y,z) \), a distance metric such as hamming loss
Loss-Augmented Decoding

• want for all \(z \):
 \[w \cdot \phi(x,y) \geq w \cdot \phi(x,z) + \ell(y,z) \]

• same as:
 \[w \cdot \phi(x,y) \geq \max_z w \cdot \phi(x,z) + \ell(y,z) \]

• loss-augmented decoding: \(\arg\max_z w \cdot \phi(x,z) + \ell(y,z) \)

• if \(\ell(y,z) \) factors in \(z \) (e.g. hamming), just modify DP

\[
\begin{align*}
\text{Algorithm 41 } \text{StochSubGradStructSVM}(D, \text{MaxIter, } \lambda, \ell) \\
1: & w \leftarrow 0 \quad \text{// initialize weights} \\
2: & \text{for } \text{iter} = 1 \ldots \text{MaxIter} \text{ do} \\
3: & \quad \text{for all } (x,y) \in D \text{ do} \\
4: & \quad \quad \hat{y} \leftarrow \arg\max_{\hat{y} \in \mathcal{Y}(x)} w \cdot \phi(x,\hat{y}) + \ell(y,\hat{y}) \quad \text{// loss-augmented prediction} \\
5: & \quad \quad \text{if } \hat{y} \neq y \text{ then} \\
6: & \quad \quad \quad w \leftarrow w + \phi(x,y) - \phi(x,\hat{y}) \quad \text{// update weights} \\
7: & \quad \quad \quad \text{end if} \\
8: & \quad \quad w \leftarrow w - \frac{\lambda}{N} w \quad \text{// shrink weights due to regularizer} \\
9: & \quad \text{end for} \\
10: & \text{end for} \\
11: & \text{return } w \quad \text{// return learned weights}
\end{align*}
\]

→ modified DP

→ should have learning rate!

\(\lambda = 1/(2C) \)

very similar to Pegasos; but should use Pegasos framework instead
Correct Version following Pegasos

- want for all z: $w \cdot \phi(x,y) \geq w \cdot \phi(x,z) + \ell(y, z)$
- same as: $w \cdot \phi(x,y) \geq \max_z w \cdot \phi(x,z) + \ell(y, z)$
- loss-augmented decoding: $\arg\max_z w \cdot \phi(x,z) + \ell(y, z)$
- if $\ell(y, z)$ factors in z (e.g. hamming), just modify DP

```
Algorithm 41 StochSubGradStructSVM(D, MaxIter, $\lambda$, $\ell$)
1: $w \leftarrow 0$ // initialize weights
2: for iter = 1 \ldots MaxIter do
3: for all $(x,y) \in D$ do
4: \hspace{1cm} $w \leftarrow w - 1/t \cdot w$ \hspace{1cm} // shrink weights due to regularizer
5: \hspace{1cm} $\hat{y} \leftarrow \arg\max_{\hat{y} \in Y(x)} w \cdot \phi(x, \hat{y}) + \ell(y, \hat{y})$ \hspace{1cm} // loss-augmented prediction
6: \hspace{1cm} if $\hat{y} \neq y$ then
7: \hspace{2cm} $w \leftarrow w + \frac{NC}{2t} \left( \phi(x, y) - \phi(x, \hat{y}) \right)$ \hspace{1cm} // update weights
8: \hspace{1cm} end if
9: \hspace{1cm} end for
10: end for
11: return $w$ \hspace{1cm} // return learned weights
```

$N = |D|$, C is from SVM
$t + = 1$ for each example
Struct. Perceptron vs Struct. SVM

- tagging, ATIS (train: 488 sent); SVM < avg perc << perc

perceptron

epoch 1 updates 102, \(|W|=291\), train_err 3.90%, dev_err 9.36% avg_err 6.14%
epoch 2 updates 91, \(|W|=334\), train_err 3.33%, dev_err 8.19% avg_err 4.97%
epoch 3 updates 78, \(|W|=347\), train_err 2.92%, dev_err 5.85% avg_err 4.97%
epoch 4 updates 81, \(|W|=368\), train_err 3.11%, dev_err 6.73% avg_err 5.85%
epoch 5 updates 78, \(|W|=378\), train_err 2.70%, dev_err 6.14% avg_err 5.56%
epoch 6 updates 63, \(|W|=385\), train_err 2.26%, dev_err 6.14% avg_err 5.56%
epoch 7 updates 69, \(|W|=385\), train_err 2.43%, dev_err 7.02% avg_err 5.56%
epoch 8 updates 60, \(|W|=388\), train_err 2.15%, dev_err 6.73% avg_err 5.56%
epoch 9 updates 59, \(|W|=390\), train_err 2.04%, dev_err 6.14% avg_err 5.56%
epoch 10 updates 64, \(|W|=394\), train_err 2.15%, dev_err 5.85% avg_err 5.26%

SVM C=1

epoch 1 updates 116, \(|W|=311\), train_err 4.55%, dev_err 5.85%
epoch 2 updates 82, \(|W|=328\), train_err 3.05%, dev_err 4.97%
epoch 3 updates 78, \(|W|=334\), train_err 2.92%, dev_err 5.56%
epoch 4 updates 77, \(|W|=339\), train_err 2.92%, dev_err 5.26%
epoch 5 updates 80, \(|W|=344\), train_err 2.94%, dev_err 5.56%
epoch 6 updates 73, \(|W|=345\), train_err 2.75%, dev_err 4.68%
epoch 7 updates 72, \(|W|=347\), train_err 2.75%, dev_err 4.97%
epoch 8 updates 75, \(|W|=352\), train_err 2.86%, dev_err 4.97%
epoch 9 updates 74, \(|W|=353\), train_err 2.78%, dev_err 4.97%
epoch 10 updates 72, \(|W|=354\), train_err 2.78%, dev_err 4.97%