1. Let

\[x(t) = \begin{cases}
 t, & 0 \leq t \leq 1 \\
 3 - 2t, & 1 \leq t \leq 2 \\
 0, & \text{otherwise}
\end{cases} \]

(a) Plot \(x(t) \)

(b) Determine and plot the odd component \(x_o(t) \) and even component \(x_e(t) \) of \(x(t) \)

(c) Is this a power or energy signal? Explain your answer.

(d) Plot \(y(t) = x(2t + 1) \)

2. Let \(x(t) = \cos \left(\frac{2}{5} t \right) + \sin \left(\frac{1}{5} t \right) \)

(a) Is \(x(t) \) periodic? If so, find its fundamental period. If not, explain why?

(b) If \(y[n] = x(5n/2) \), i.e., \(y[n] \) is the sampled signal of \(x(t) \) at every interval \(T = \frac{5}{2} \). Is \(y[n] \) periodic? If so, find its fundamental period. If not, explain why?

3. Given an LTI system with the impulse response \(h(t) \) is shown in Fig. 1.

![Figure 1: \(x(t) = h(t) \)](image)

(a) Determine whether \(h(t) \) is BIBO stable? memoryless? causal? Explain your answer for each case.

(b) Find the output \(y(t) \) corresponding to an input signal \(x(t) = h(t) \).