1. Problem 1: (20 pts) Let \(x(t) = u(1 - t) \) and \(h(t) = t(u(t) - u(t - 2)) \).
 (a) Sketch \(h(\tau), x(\tau), x(t - \tau) \) and carefully label the values on the axes. (6 pts)
 (b) Determine \(y(t) = x(t) \ast h(t) \) by performing graphical convolution. No need to sketch \(y(t) \). (14 pts)

2. Problem 2: (30 pts) Using either the definition or inspection method,
 (a) Compute the appropriate Fourier representation for \(x[n] = e^{-\frac{j\pi}{4} n} \cos\left(\frac{\pi n}{4}\right) + \sin\left(\frac{\pi n}{3}\right) \). (15 pts)
 (b) Let \(x(t) \) be a periodic signal with the fundamental angular frequency \(\frac{2\pi}{3} \). Find \(x(t) \) given that its Fourier representation is \(X[k] = \left(-\frac{1}{2}\right)^k u[k - 2] \). (15 pts)

3. Problem 3: (20 pts)

 \[
 x(t) \xrightarrow{h_1} y(t) \xrightarrow{h_2} z(t)
 \]

 Figure 1: Problem 3

 An LTI system consisting of two LTI subsystems are shown in the Figure 1. Let the frequency responses of the two subsystems \(h_1 \) and \(h_2 \) be defined as:

 \[
 H_1(j\omega) = \begin{cases}
 |\omega| \frac{\pi}{3} \leq |\omega| < \frac{2\pi}{3} \\
 0 & \text{otherwise}
 \end{cases}, \quad H_2(j\omega) = \begin{cases}
 w^2 & \omega > \frac{\pi}{3} \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Let \(x(t) = 4\cos^2\left(\frac{\pi t}{4}\right) + e^{-j\pi t} \sin\left(\frac{\pi t}{3}\right) \) be the input into the system.

 (a) Determine \(n, c_i \)'s and \(\omega_i \)'s such that \(x(t) = \sum_{i=1}^{n} c_i e^{j\omega_i t} \) (10 pts)
 (b) Use the property of LTI system with eigenfunction \(e^{j\omega t} \) as input to determine the output \(y(t) \) from the system \(h_1 \). (DO NOT USE OTHER METHOD) (5pts)
 (c) Determine the output \(z(t) \) from the system \(h_2 \). (5pts)

4. Problem 4: (15 pts) Let

 \[
 m(t) = e^{-2t}u(t - 3), \quad n(t) = \cos(\pi t)m(t), \quad o(t) = \delta(t - 1) * n(t).
 \]

 Use the properties of FT and the well-known FT pairs in the table provided to find the following Fourier representations:

 (a) \(M(j\omega) \) (5 pts)
 (b) \(N(j\omega) \) (5 pts)
 (c) \(O(j\omega) \) (5 pts)
5. **Problem 5: (15pts)** A system is characterized by the following input-output relationship:

\[y[n] = \sum_{i=n-2}^{\infty} 2^{i-n} x[i+1] \]

(a) Show that the system is an LTI system (5 pts)

(b) Determine the impulse response \(h[n] \) of the system. (5 pts)

(c) Is \(h[n] \) BIBO stable? Justify your answers. (5 pts)

6. **Bonus Problem: (5 pts)** Let

\[x(t) = t^2(u(t) - u(t - 1)). \]

Determine \(X(0) \).