1. Evaluate the following discrete-time convolution
 (a) \(y[n] = \frac{1}{4} n u[n] \ast u[n + 2] \)
 (b) \(y[n] = (-1)^n \ast 2^n u[-n + 2] \)
 (c) \(y[n] = \beta^n u[n] \ast \sum_{m=0}^{\infty} \delta[n - 4m] \)

2. Evaluate the following continuous-time convolution
 (a) \(y(t) = e^{-\gamma t} u(t) \ast (u(t + 2) - u(t)) \)
 (b) \(y(t) = e^{-\gamma t} u(t) \ast e^{\beta t} u(-t) \)
 (c) \(y(t) = e^{-\gamma t} u(t) \ast \sum_{m=0}^{\infty} \frac{1}{4} \delta(t - m) \)

3. Consider the discrete-time signals depicted in Fig. 1. Evaluate the following convolution sums:

![Figure 1: Figures for the discrete time signals to be used in problem 3](image)

 (a) \(m[n] = y[n] \ast z[n] \)
 (b) \(m[n] = y[n] \ast w[n] \)

4. Consider the continuous-time signals depicted in Fig. 2. Evaluate the following convolution integrals:
Figure 2: Figures for the continuous time signals to be used in problem 4

(a) \(m(t) = x(t) * y(t) \)
(b) \(m(t) = x(t) * z(t) \)
(c) \(m(t) = y(t) * w(t) \)
(d) \(m(t) = z(t) * f(t) \)

5. For each of the following impulse responses, determine whether the corresponding system is memoryless, causal, stable

(a) \(h(t) = \cos(\pi t) \)
(b) \(h(t) = e^{-2t}u(t-1) \)
(c) \(h[n] = \cos\left(\frac{\pi}{8}\right)\{u[n] - u[n-10]\} \)
(d) \(h[n] = \sum_{p=-1}^{\infty} \delta[n-2p] \)