Announcements

Homework 9/10:

- Is online now.
- Due Monday November 30th at the start of the lecture (2:00pm).
- I will return it one week later (December 7th).
- Homework 9 consists of content covered in Lectures 16 and 17.
Lecture 18

• Flexible Electronics.
• Device Development.
• Device Flexibility.
• Plastic Electronics.
• Applications.

Additional Sources

• This is a subject the course textbook (Brotherton) does cover.
• Chapter 11.
• The textbook goes into quite a lot of depth on the subject.
• This is an active area of research so some of the content is out of date.
Additional Information

- This is also a very good review on oxide TFTs, with a focus on flexible applications

Applied Physics Reviews A 021303 (2016)

Metal oxide semiconductor thin-film transistors for flexible electronics

Luisa Petti,1 Niko Müllenrieder,1,2 Christian Vogt,1 Hendrik Faber,2 Lars Büthe,3
Giuseppe Cantarella,3 Francesca Bottacchi,3 Thomas D. Anthopoulos,3
and Gerhard Tröster2

1Electronics Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland
2Sensor Technology Research Centre, University of Sussex, Falmer, United Kingdom
3Department of Physics and Centre for Plastic Electronics, Imperial College London, London,
United Kingdom

Additional Information

- There are journals dedicated to the subject of flexible electronics:

https://www.nature.com/npjflexelectron
Flexible Electronics

TFT Backplanes

- We have previously talked about TFT’s main commercial application at present: display backplanes.

https://www.youtube.com/watch?v=yuU105p09s
Flexible Electronics

• But we hope that one day we can create electronic products that are mechanically flexible.

Samsung Infinity Flex

• A couple years ago saw the release of the first flexible phone / tablet prototype from Samsung.

https://www.youtube.com/watch?v=t0NbSPmIo20
Flexible Electronics

- We have learnt a lot about TFTs generally, but what do we need to consider when we move from rigid, planar, devices to flexible and conformal electronics?

Device Development
Materials

• Before we talk about device behavior, we first need to address how to make mechanically flexible TFTs?
• We know we cannot use glass as a substrate.

• So we need to identify substrates and semiconductors which are mechanically flexible.

Young’s Modulus

• The best way to quantify a material’s ability to withstand mechanical deformations is via it’s Young’s Modulus.
• We will not spend too long on what exactly Young’s modulus is. We will treat it as a way to quantify the stiffness of a material.
• The Young’s modulus (Y) is ratio of stress to strain:
 \[Y = \frac{\sigma}{\varepsilon} \]
• σ: Stress.
• ε: Strain.
Strain

- Strain (ε) is defined as the change in length divided by original length.

\[\varepsilon = \frac{L_n - L_0}{L_0} \]

- I.e. strain is dimensionless.

Stress

- Stress is just the force per unit area applied to create the deformation.

\[\sigma = \frac{F}{A} \]

- Stress has units of pressure (e.g. Pascals).
Young’s Modulus

- The Young’s modulus \((Y) \) is ratio of stress to strain:
 \[
 Y = \frac{\sigma}{\varepsilon}
 \]

- Systems with high \(Y \) have high stiffness:

- Systems with low \(Y \) have low stiffness:

For anisotropic materials \(Y \) will depend on directions.
- In this case, \(Y \) will be a tensor.
- We will assume materials have isotropic \(Y \).

Most materials we are interested in have Youngs Moduli in the GPa regime:

<table>
<thead>
<tr>
<th>Material</th>
<th>(Y) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>71</td>
</tr>
<tr>
<td>Kapton</td>
<td>2.5</td>
</tr>
<tr>
<td>PAR</td>
<td>2.9</td>
</tr>
<tr>
<td>PES</td>
<td>2.2</td>
</tr>
<tr>
<td>PEN</td>
<td>6.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>(Y) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>5.3</td>
</tr>
<tr>
<td>Steel</td>
<td>200</td>
</tr>
<tr>
<td>SiN</td>
<td>210</td>
</tr>
<tr>
<td>SiO₂</td>
<td>70</td>
</tr>
<tr>
<td>Si</td>
<td>130</td>
</tr>
</tbody>
</table>

Table 11.1 Brotherton
Maximum Temperature

• We are interested in substrate materials which have a low stiffness (i.e. a low Young’s modulus).

• These are materials which also have low melting points (or glass transition temperatures).

• We cannot exceed these temperatures at any stage in the development process.

<table>
<thead>
<tr>
<th>Material</th>
<th>Tmax (°C)</th>
<th>Y (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>666°</td>
<td>71</td>
</tr>
<tr>
<td>PI (Kapton)</td>
<td>350</td>
<td>2.5</td>
</tr>
<tr>
<td>PAR</td>
<td>340</td>
<td>2.9</td>
</tr>
<tr>
<td>PES</td>
<td>223</td>
<td>2.2</td>
</tr>
<tr>
<td>PEN (HS)</td>
<td>150 (200)</td>
<td>6.1</td>
</tr>
<tr>
<td>PET (HS)</td>
<td>80 (150)</td>
<td>5.3</td>
</tr>
<tr>
<td>Steel</td>
<td>>1,000</td>
<td>200</td>
</tr>
<tr>
<td>SiN</td>
<td>>1,000</td>
<td>210</td>
</tr>
<tr>
<td>SiO2</td>
<td>>1,000</td>
<td>70</td>
</tr>
<tr>
<td>Si</td>
<td>>1,000</td>
<td>130</td>
</tr>
</tbody>
</table>

Table 11.1 Brotherton

Maximum Temperature

• These maximum temperatures are extremely prohibitive.

• While materials such as Kapton (poly-oxydiphenylene-pyromellitimide) are stable up to close to 400°C, we would prefer to use cheaper plastics such as PEN (Polyethylene naphthalate) or PET (Polyethylene terephthalate).

 • For these systems we really need to aim for process temperatures < 200°C.

 • This can be a challenge for certain material systems.
Metal Oxide Semiconductors

- For example, in Lecture 7 we saw that the conversion temperature for solution-processed metal oxide semiconductors can be above this.

Coefficient of Thermal Expansion

- In addition to the maximum temperature of the substrate, we also need to be aware of how much the substrate is going to deform during processing.

- Why is this important?

- It can potentially cause cracking / deformations

![Diagram](image-url)
Coefficient of Thermal Expansion

- We quantify this through the coefficient of thermal expansion (CTE):
 \[\alpha = \frac{1}{L} \frac{\partial L}{\partial T} \]

- \(\alpha \): coefficient of thermal expansion (CTE)
- \(L \) length of material.
- \(T \) Temperature.
- The CTE is normally quoted in ppm/K.

<table>
<thead>
<tr>
<th>Material</th>
<th>Tmax (°C)</th>
<th>CTE, (\alpha) (ppm/K)</th>
<th>(Y) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>666°</td>
<td>3.2</td>
<td>71</td>
</tr>
<tr>
<td>PI (Kapton)</td>
<td>350</td>
<td>17</td>
<td>2.5</td>
</tr>
<tr>
<td>PAR</td>
<td>340</td>
<td>53</td>
<td>2.9</td>
</tr>
<tr>
<td>PES</td>
<td>223</td>
<td>54</td>
<td>2.2</td>
</tr>
<tr>
<td>PEN (HS)</td>
<td>150 (200)</td>
<td>13</td>
<td>6.1</td>
</tr>
<tr>
<td>PET (HS)</td>
<td>80 (150)</td>
<td>15</td>
<td>5.3</td>
</tr>
<tr>
<td>Steel</td>
<td>>1,000</td>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td>SiN</td>
<td>>1,000</td>
<td>2.7</td>
<td>210</td>
</tr>
<tr>
<td>SiO2</td>
<td>>1,000</td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td>Si</td>
<td>>1,000</td>
<td>2.6</td>
<td>130</td>
</tr>
</tbody>
</table>

Table 11.1 Brotherton

Thermal Strain

- Say we heat our sample to some temperature that is \(\Delta T \) above room temperature to deposit the film.
- If our substrate (\(\alpha_s \)) and film (\(\alpha_f \)) have different values of coefficient of thermal expansion, we can expect to induce strain (\(\varepsilon_f \)) into the TFT:
 \[\varepsilon_f = \left(\frac{\alpha_f - \alpha_s}{Y_f d_f} \right) \frac{\Delta T}{Y_s d_s + 1} \]

- \(Y_f \): Young’s modulus of film.
- \(Y_s \): Young’s modulus of substrate.
- \(d_f \): Film thickness.
- \(d_s \): Substrate thickness.
Thermal Strain

\[\varepsilon_f = \left(\frac{(\alpha_f - \alpha_s)\Delta T}{Y_f d_f / Y_s d_s + 1} \right) \]

- For thick substrates we will normally find that \(Y_s d_s \gg Y_f d_f \).
- Under these circumstances we see that the thermal strain of reduces to:
 \[\varepsilon_f = (\alpha_f - \alpha_s)\Delta T \]
- I.e. the higher the processing temperature, the higher the strain on the film.

Cracking

- What happens if \(\varepsilon_F \) is too large?
- The main problem is cracking.

- As a rule of thumb we should aim for \(\varepsilon_F < 0.3\% \)

Figure 11.1 Brotherton

ECE 617 – Thin Film Electronics
Fall 2020 - John Labram
Bending

• In addition to cracking, thermal stress can also lead to bending and buckling.

\[R = \frac{d_s}{6(1 + \nu)e_M k \eta} \left[\frac{(1 - \kappa \eta^2)^2 + 4 \kappa \eta (1 - \eta)^2}{1 + \eta} \right] \]

• Where:
 • \(d_s \): Substrate thickness.
 • \(e_M \): Differential thermal strain of substrate and film:
 \[e_M = (\alpha_f - \alpha_s) \Delta T \]
 • \(\alpha_f \): coefficient of thermal expansion of film.
 • \(\alpha_s \): coefficient of thermal expansion of substrate.
Bending

- The radius of curvature (R) is given by:

$$R = \frac{d_s}{6(1 + v)\epsilon_M \kappa \eta} \left[\frac{(1 - \kappa \eta)^2 + 4\kappa \eta (1 - \eta)^2}{1 + \eta} \right]$$

- Where:
 - κ: Ratio of Young’s moduli:
 $$\kappa = \frac{Y_f}{Y_s}$$
 - η: Ratio of film thicknesses:
 $$\eta = \frac{d_f}{d_s}$$
 - v: Poisson’s Ratio:
 $$v = -\frac{d\epsilon_{\text{trans}}}{d\epsilon_{\text{axial}}}$$
 - ϵ_{trans}: Transverse strain.
 - ϵ_{axial}: Axial strain.
Poisson’s Ratio

• Poisson’s Ratio just quantifies the deformation of a material due to stretching or compression.

• Axial strain ($\varepsilon_{\text{axial}}$) will be positive for tension and negative for compression.

• Transverse strain ($\varepsilon_{\text{trans}}$) will be positive for axial compression and negative for axial tension.

Substrate Bending

• The figure below shows the normalized radius of curvature.

$$R = \frac{d_s}{6(1 + \nu)E_M\kappa \eta} \left[\frac{(1 - \kappa \eta^2)^2 + 4\kappa \eta(1 - \eta)^2}{1 + \eta} \right]$$

Figure 11.2 Brotherton
Implication for Applications

- Brotherton tend to discuss flexible electronics in the context of a-Si:H.
- To deposit a-Si:H reliably we require process temperatures > 300°C.
- At these temperatures, the effects of cracking and bending are significant.
- By using solution-processable organic semiconductors for example, we could get closer to room-temperature.
- Clearly this would be beneficial for developing commercial products.

Device Flexibility
Flexible Electronics

- So far we have only looked at the mechanical requirements of our materials to be able to form TFTs using flexible materials.
- We also need to consider another question: what sort of deformation can the devices tolerate?
- We often quantify deformations in terms of bending radius (R):

$$
\varepsilon_f = \left[\frac{d_f + d_s}{2R} \right] \left[\frac{1 + 2\eta + \kappa \eta^2}{(1 + \eta)(1 + \kappa \eta)} \right]
$$

- Where:
 - κ: Ratio of Young’s moduli:
 $$
 \kappa = \frac{Y_f}{Y_s}
 $$
 - η: Ratio of film thicknesses:
 $$
 \eta = \frac{d_f}{d_s}
 $$
 - Young’s modulus of film
 - Young’s modulus of substrate
 - Thickness of films
 - Thickness of substrate
Flexible Electronics

- For hydrogenated amorphous silicon, there is a reasonably limited range of acceptable value of ε_f:

 ![Figure 11.2 Brotherton](image)

 - Under tensile strain the failures is due to crack propagation.
 - Under compressive strain the failures is due to buckling and delamination.

Example

- Lets consider some examples.

 $$\varepsilon_f = \left[\frac{d_f + d_s}{2R} \right] \frac{1 + 2\eta + \kappa \eta^2}{(1 + \eta)(1 + \kappa \eta)}$$

- We will consider the structure below

 ![Structure Diagram](image)

 $$\eta = \frac{d_f}{d_s} = \frac{100}{10} = 0.1$$

 $$R = 1000 \mu m$$
Example

• Let’s start by looking at silicon as our semiconductor.

\[
\kappa = \frac{Y_f}{Y_s} = \frac{130}{5.3} = 24.5
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>Tmax (°C)</th>
<th>CTE, (\kappa) (ppm/K)</th>
<th>Y (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>666°</td>
<td>3.2</td>
<td>71</td>
</tr>
<tr>
<td>PI (Kapton)</td>
<td>350</td>
<td>17</td>
<td>2.5</td>
</tr>
<tr>
<td>PAR</td>
<td>340</td>
<td>53</td>
<td>2.9</td>
</tr>
<tr>
<td>PES</td>
<td>223</td>
<td>54</td>
<td>2.2</td>
</tr>
<tr>
<td>PEN (HS)</td>
<td>150 (200)</td>
<td>13</td>
<td>6.1</td>
</tr>
<tr>
<td>PET (HS)</td>
<td>80 (150)</td>
<td>15</td>
<td>5.3</td>
</tr>
<tr>
<td>Steel</td>
<td>>1,000</td>
<td>14</td>
<td>200</td>
</tr>
<tr>
<td>SiN</td>
<td>>1,000</td>
<td>2.7</td>
<td>210</td>
</tr>
<tr>
<td>SiO2</td>
<td>>1,000</td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td>Si</td>
<td>>1,000</td>
<td>2.6</td>
<td>130</td>
</tr>
</tbody>
</table>

Table 11.1 Brotherton

Example

• Enter these values:

\[
\varepsilon_f = \left[\frac{d_f + d_s}{2R} \right] \left[\frac{1 + 2\eta + \kappa \eta^2}{(1 + \eta)(1 + \kappa \eta)} \right]
\]

\[
\kappa = 24.5 \quad \eta = 0.01 \quad R = 1000 \mu m \quad d_f = 0.1 \mu m \quad d_s = 10 \mu m
\]

• Let’s work in \(\mu m\):

\[
\varepsilon_f = \left[\frac{0.1 + 10}{2 \times 1000} \right] \left[\frac{1 + 2 \times 0.01 + 24.5 \times 10^{-4}}{(1 + 0.01)(1 + 24.5 \times 0.01)} \right]
\]

\[
\varepsilon_f = 5.05 \times 10^{-3} \times 0.813
\]

\[
\boxed{\varepsilon_f = 0.41\%}
\]
Flexible Electronics

- Even if we don’t irreversibly damage our device, we can expect the performance of devices to change as we adjust strain.
- This is normalized mobility data for a-Si:H:

\[
\frac{\mu}{\mu_0} = 1 + 26\varepsilon
\]

![Figure 11.22 Brotherton](image.png)

Flexible Electronics

- Even if we don’t irreversibly damage our device, we can expect the performance of devices to change as we adjust strain.
- Similar data for poly-crystalline silicon.

![Figure 11.30 Brotherton](image.png)
Flexible Electronics

- A lot of these studies are empirical, but intuitive results are obtained.
- Consider this data for example.
- IGZO is amorphous.
- ZnO is polycrystalline.
- It is believed that grain boundaries can act as nucleation centers for cracks.

![Normalized TFT Mobilities vs Tensile Bending Radius](image)

Flexible IGZO

- For electronics based on inorganic semiconductors, IGZO is a good choice.
 - It is amorphous.
 - High electron mobility.
 - Optically Transparent.
- However the Young’s modulus is a lot higher than plastics:

![Young's modulus vs Indentation depth](image)

Yoshikawa et al., App. Phys. Exp. 6, (2013) 021101
Flexible IGZO TFTs

- IGZO TFTs with impressive bending radii have been demonstrated.

Salvatore et al., Nat. Comms. 5, (2014) 2982
Mechanical Properties of IGZO

- IGZO will crack under extreme deformations.

Plastic Electronics

- Because organic semiconductors are plastics, they are the obvious choice for flexible electronics.
- They have similar mechanical properties to plastic substrate (e.g. Young’s modulus and coefficient of thermal expansion).
- Low thermal budget (generally).
- Some systems do require thermal energy to arrange into optimal morphology.

Shahid et al., Chem. Sci. 3 (2012) 181
Plastic Electronics

- But if we want to do something like this:

 ![Image](https://www.youtube.com/watch?v=3_JUHHMyLQw)
 ![Image](https://www.youtube.com/watch?v=zPhDUN5IBZ8)

- Plastic electronics is the most likely way it will happen.

Organic Flexible Electronics

- There have been demonstrations of extremely flexible electronics using organics.

 ![Image](https://halik.et.al.nature.431(2004)963)

 ![Image](https://sekitani.et.al.nature.materials.9,(2010)1015)
Organic Flexible Electronics

• There have been demonstrations of extremely flexible electronics using organics.

Organic Flexible Electronics

• Complementary inverters have been demonstrated:

Organic Flexible Electronics

• And ring oscillators.

Applications
Applications

- So why do we want flexible electronics?
- Some potential applications are novel and clearly have commercial value:

 ![Flexible electronics application](https://www.youtube.com/watch?v=3_JUHHMyLQw)

- Many applications are imagination limited.

Communications

- The most simple application are **passive**.
 - I.e. those not requiring power.

 ![RFID diagram](https://i.imgur.com/2oJ5z5y.png)

- Energy provided by incoming signal is processed, then a different signal is returned.
- This is radio-frequency identification (RFID).
RFID Tags

- These are very common.

- They typically operate over very short distances only.
 - < 10cm.

RFID Tags

- Traditionally an antenna is combined with a standard silicon-based integrated circuit.

- This is something where flexible electronics can take over (and probably will).
Electronic Whisky Bottle

- Prototype by Thin Film Electronics (Norwegian Company).

![Electronic Whisky Bottle Image]

https://www.youtube.com/watch?v=5h6m6CESS14

Longer Range Communication

- But what about communicating over longer distances?

- This typically requires an active device and a higher frequency.
- E.g. Bluetooth is 2.45 GHz.
 - This is much higher than RFID (13.56 MHz).
Longer Range Communication

- Longer distances open up more applications.

![Diagram showing different ranges and frequencies for communication systems](image)

- Is this possible for flexible electronics?

High Mobility Systems

- High charge carrier mobilities are required.
- Mobilities and frequencies obtained on flexible substrates:

![Graph showing mobility and frequency relationships](image)

Electronics on Paper

- This is a very challenging topic.

Electronics on Paper

- The surface roughness is incredibly large for paper.
- The surface must be passivated before semiconductors can be deposited.

Electronics on Paper

- Display arrays have been demonstrated on paper:

![Diagram of a display array on paper](image)

Electronic Bank Notes

- Some research groups have deposited operation TFTs onto 5 Euro bank notes.

![Images of TFTs on a 5 Euro bank note](image)

Electronic Bank Notes

• There is significant device-to-device variation.

• But some devices do work.

Electronic Bank Notes

• Working circuits can be demonstrated:

• This is the first step to electronic / traceable physical currency.
3D Printed Electronics

- Recent developments had led to the 3D printing of flexible electronics components.

- While not as fast as roll-to-roll printing, 3D printing enables the development of multilayer systems.

3D Printed Electronics

- In particular, high-density capacitors.
Biodegradable Electronics

• Another potential benefit of using organic materials for flexible electronics is the fact that we use organic compounds routinely.

Biodegradable Electronics

• Researchers have demonstrated “edible” electronics deposited onto the surface of a capsule.

Biodegradable Electronics

• For the same reason, we should be able to manufacture electronics which are biodegradable.

Lei et al., PNAS. 114, (2017) 5107.

Biodegradable Electronics

• For the same reason, we should be able to manufacture electronics which are biodegradable.

• The main challenge is to do with electrodes.
• A certain amount of metal is ok, but ideally we would seek biodegradable electrodes as well.

Lei et al., PNAS. 114, (2017) 5107.
Next Time...

- Bio-electronics.