Lecture 19
Biological Electronics

Announcements

Homework 9/10:
• Is due now.

Homework 10/10:
• Is online now.
• Due Monday December 7th at 2pm
• I will return it by the end of Finals Week
• Homework 10 consists of content covered in Lectures 18 and 19.
Announcements

Course Conclusion

• Today is the last lecture of the course.
• After Homework 10, there is no more assessment for ECE617.
 • There are no examinations.
• I will return your 10th homework during Finals Week.
• I will upload your course grade by the end of Finals Week.
• My next course is ECE615 in Winter (two terminal devices).
• A more detailed course on FET behavior is offered in Spring (ECE616) but I do not teach it.

Lecture 19

• Biological Information Processing.
• Interfacing with Biology.
• Neuromorphic Devices.
• Course Summary.
Additional Sources

• This is a subject the course textbook (Brotherton) does not cover this subject at all.
• Reviews on Bioelectronics:
 • https://pubs.acs.org/doi/10.1021/cm4022003
 • https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.6b00146
• Reviews on Neuromorphic Computing:
 • https://www.nature.com/articles/s41928-018-0103-3

Biological Information Processing
Bioelectronics

- Bioelectronics is a broad term for any electronics which interacts directly with the human body.
- We can describe bioelectronics as either:
 - Receiving information from the body.
 - Providing signals or treatment to the body.

Receiving Information

- For example, we could place electronics on part of the human body and read signals:

Sending Information

- Or we can send electronic signals into the human body.

Biological Signaling

- Before we can consider interacting with the human body, we need to understand how information is transmitted in the biological systems.

- This is an incredibly complicated subject, and we are not biologists (me especially!).
Biological Signaling

- For our purposes, we just need to know roughly how information is transmitted in biological systems.
- In conventional electronics we process information with electrons and holes (mainly).
- In biological systems, **ions and molecules** are used to transmit information.
- Molecules come in a wide range of sizes:

Inter-Neuron Communication

- In the brain for example, signals are passed between neurons via mass transport.

Action Potential

- The charged ions (e.g. Ca\(^{2+}\), Na\(^{+}\)) that cross the boundary then depolarize the cell.

- The charge then travels down the axon as a wave.
 - Roughly 100 m/s.

Interfacing with Biology
Biological Electronics

- One way to detect properties of the human body is to detect chemical properties.
- Certain chemicals are associated with certain biological processes.
- The simplest way one can detect chemicals is to use a chemresistor.

![Chemresistor Diagram]

Chemresistor

- Here we just measure the conductance as a function of exposure to various compounds.
- We need a semiconductor which will change conductance when it comes in contact with a relevant chemical.
- Organic semiconductors are therefore well suited to this application.
- They can change properties when in contact with solvents.

https://www.youtube.com/watch?v=f4K5p2VhWA
Chemresistor

- Groups have demonstrated the ability of organic chemresistors to detect the presence of certain solvents.

![Chemresistor](image1)

Chemical-Sensing TFTs

- If the conductance can be changed by the presence of chemicals, it should be possible to manufacture thin film transistors which are capable of detecting chemicals / biological compounds.

![Chemical-Sensing TFTs](image2)
Water Gated TFTs

- While solid-gas interfaces are sometimes useful, it turns out that being able to detect the chemical properties of a solution is a lot more powerful.
- Ideally we would like to be able to use our electronics to determine the concentration of some compound in a liquid.
- To do this we could use a water-gated TFT.

If we can assume that the liquid will not significantly permeate the semiconductor, then we could use this TFT geometry:

TGBC

- Top-gate bottom contact

Water-Gated TFT

- Substrate
Water Gated TFTs

- How does this device work?
- Water is a polarizable medium:
 - It contains mobile ions.
- If you apply a gate bias, ions will be attracted / repelled from the gate electrode.
- A double layer will form at semiconductor-dielectric interface.
- If no ions cross into the semiconductor, this is similar to conventional field-effect gating.

The presence of impurities can affect the ability of the TFT to be gated.

Proteins, DNA etc. will be charged and will have an associated ionic mobility.
OECTs

- We stated that water-gated TFTs that **no ions cross into the semiconductor**.
- Chemicals present in the liquid effect the ability to gate the device, but we are still injecting and transporting **conventional electronic charge**.
- But we know the human body uses ions to signal.
- So if we can develop a device that is able to inject and transport ions, we should be able to interface more directly with the human body.
- These are organic electrochemical transistors (OECTs).

OECTs

- Organic electrochemical transistors (OECTs) are devices in which ions actually enter the semiconductor films, and effect (electronic) charge transport.
- You can think of them as being water-gated TFTs, where ions cross the boundary between the liquid and the semiconductor.
- What happens in such a device?
PEDOT:PSS

• It turns out that the best OECTs are based on the conducting polymer blend PEDOT:PSS.

• The PSS is negatively charged, and the PEDOT compensates with mobile electronic positive charge (holes).

PEDOT:PSS

• Because the PSS is negatively charged, there are free holes in the PEDOT and, the blend is hence a p-type conductor

• It is often used as a quasi-transparent conductor in organic photovoltaic cells (OPV) in combination with ITO.
PEDOT:PSS

- If we made a TFT using PEDOT:PSS as the channel material, we would just have a conducting channel.

![PEDOT:PSS Diagram](image)

- I.e. current could flow with no applied V_G.
- But this is only conducting because the PSS is charged.

Depletion Mode TFTs

- So an OECT is actually a rare example of a **depletion-mode** TFT.
 - I.e. under equilibrium conditions it is on, and we have to provide a signal to turn it off.
 - A lot of traditional MOSFETs are depletion mode transistors.
OECTs

- Instead of applying a bias, ions that enter the PEDOT:PSS will neutralize the PSS, and stop the blend from being conductive.

![Diagram showing OECT behavior](image1)

- So OECTs will strongly change their characteristics based on ionic content in the solution.

![Diagram showing OECT characteristics](image2)
OECTs

- These devices have been demonstrated as glucose sensors:

- These can potentially be used for diabetes sufferers.

OECTs

- They are able to differentiate different types of DNA.

OECTs in the Body

- These devices can clearly be used to help us determine chemical composition in solutions, but how does this work when in the human body?

- OECTs have been put onto probes and inserted into rat brains. Electrical activity can be tracked.

OECTs in the Body

- One approach is to develop the TFTs on a flexible (non-toxic) substrate.
- The probe is then placed on the brain.
Ion Pumps

- So what about providing treatment to the body?
- This is a little more challenging, because generally we want to inject ions (not electrons) into the body.
- One strategy is to use an ion pump:

 ![Diagram of ion pumps](Simon et al., Chem. Rev. 116 (2016) 13009.)

 - By applying a bias we can electronically inject the ions into the target when we want.

 ![Diagram of ion pumps](Tybrandt et al., Adv. Mater. 21 (2009) 4442.)

 - By having high spatial resolution, the delivery of ions can be made very controllable.
Ionic Conductors

- For our ion pump to work we need a material that is capable of transporting our ions.
- It turns out that PEDOT:PSS is a good ionic conductor.

ECE 617 – Thin Film Electronics
Fall 2020 - John Labram

Neuromorphic Devices
Inter-Neuron Communication

- We talked earlier about action potentials, and how information is transmitted between neurons.

- And we talked about how signals are transmitted as a polarization wave down the axon at ~100 m/s.

Information Processing

- So if information travels so slowly, how can we process certain types of information so much more efficiently than a traditional computer?
- For example, I can look at this picture and work out who it is.
- This is very challenging for a computer, and requires a lot of processing power.
- Although it is becoming a more desirable technology.
Information Processing

- You may have noticed that a neuron does not just receive a signal from one other neuron and pass it on to one other.
- It receives information from many cells and sends the signal on to many other cells.
- The brain is **massively parallel**.
 - The brain has ~100 billion neurons.
 - The brain has \(\sim 10^{14} \) neural connections.
 - The brain has a computing power of \(\sim 10^{18} \) flops.
 - IBM AC922 was benchmarked at \(2 \times 10^{17} \) flops.

Neural Networks

- In the last few years, we have tried to replicate the behavior of the brain in software.
Neural Networks

- One objective is to apply this technology to currently unsolvable problems (e.g. protein folding)

[Image of protein structure]

https://www.nature.com/articles/d41586-020-03348-4

Neural Networks

- How do neural networks work?
- We will use as an example, the identification of a hand-written number.

[Image of hand-written number and neural network diagram]

- Using conventional (Von Neumann) computation this would be incredibly difficult.

https://www.youtube.com/watch?v=aircAruvnKk
Input

• In this example the input is a set of pixels, that can have a brightness between 0 and 1.

Computation

• We then apply a weight (positive or negative) to each pixel and set the value of each new neuron between zero and one.

 • This intermediate neuron can represent anything.
 • E.g. certain part of the image

https://www.youtube.com/watch?v=airc4eu3Tkk
Computation

• With the weights set appropriately, one of these second neurons will be high if this region roughly matches what we expect or low if not.

• Irrelevant pixels would have a weighting of zero.

Computation

• The whole network could look something like the following:
Weights

• How do you actually set the weights? There are far too many to set by hand.
• The network will be trained on real data.
• E.g. images of numbers, with real values stored.
 • Guess is compared to reality weights updated.

Training

• You need to take an average of all inputs and outputs, and optimize all connections!
 • Even for a simple neural network this is incredibly costly using conventional computers.
Vector-Matrix Multiplication

• Let’s briefly return to our weightings.

• We see that the output value of y_1 is dependent on every input (x_i) and weighting ($w_{i,1}$):

$$y_1 = w_{1,1}x_1 + w_{2,1}x_2 + \cdots + w_{n,1}x_n = \sum_{i=1}^{n} w_{i,1}x_i$$

• This is just to evaluate y_1.

• To evaluate all values of y we need to consider the weights as a matrix.

$$y_j = \sum_{i=1}^{n} w_{i,j}x_i$$

• For every stage we need to carry out matrix multiplication.
Vector-Matrix Multiplication

- However, we can emulate this behavior, by using Ohm’s law:
 \[I = \frac{V}{R} = VG \]
 \[y_j = \sum_{i=1}^{n} w_{i,j} x_i \]
 \[I_j = \sum_{i=1}^{n} G_{i,j} V_i \]

- E.g. we could have a matrix of variable resistors with conductances / resistances representing weights:

\[\begin{bmatrix}
 I_1 \\
 I_2 \\
 \vdots \\
 I_n
\end{bmatrix} =
\begin{bmatrix}
 V_1 \\
 V_2 \\
 \vdots \\
 V_n
\end{bmatrix} \begin{bmatrix}
 G_{1,1} & G_{1,2} & \cdots & G_{1,n} \\
 G_{2,1} & G_{2,2} & \cdots & G_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 G_{n,1} & G_{n,2} & \cdots & G_{n,n}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix} \]

Resistor Matrix

- With this approach we can rapidly sweep the voltages of every input to evaluate the output currents.
- But this approach requires variable resistors we can program.
- I.e. we need to be able to update the resistance of each node as we train the network.
- To do this we need circuit elements which can retain history of previous states.
Memristive Devices

• We saw in Lecture 15 that we can make 2-terminal devices which can be programmed and read at different voltages.

Memristive Devices

• There are a few ways to achieve this.
Memristor Crossbar Arrays

- Oxides are typically found to give highest device density.

Memristor Crossbar Arrays

- Progress has been very fast in this field:

Inter-Neuron Communication

- An alternative approach is to more-accurately emulate the brain and use simulated spiking neurons.

 Kuzum et al., Nanotechnology **24** (2013) 382001.

- We still don’t really understand how the brain processes and stores information, but we do know that the weighting of connections between neurons depends on the phase offset between spikes.

 "those who fire together, wire together".

 ECE 617 – Thin Film Electronics
 Fall 2020 - John Labram
Neuromorphic Processors

- Like memristor crossbar arrays, this is a field which has seen a lot of progress:

- You can already buy neuromorphic processors.

Neuromorphic Transistors

- However, we could instead use our OECT.
- We know these devices have a long retention time.
- We could wire up the network so it will program the conductance of each OECT depending on training results.
- Such a device would be considered a neuromorphic thin-film transistor.

Programing OECTs

- To effectively train the network we need the states to be retained.
- OECTs happen to be very well suited to this.
 - Ionic motion is slow.
 - Certain systems can be optimized for chemical reactions to occur,
- This could potentially enable real-time training of neural networks.

Mimicking the Brain

- Depending on time-constant, we can program the OECTs with pulses rather than a constant bias.

This sort of behavior much more closely resembles real (biological) neural networks.
- Memories are stored states in neurons.
 - Time constants from ms to years can exist.
 - We are however still a very long way off understanding the brain, let alone reproducing it.
Course Summary

Course Objectives

• Overall, the goals of this course were are as follows:
 • Introduce the concept of thin-film transistors (TFTs) and their operation mechanisms.
 • What sort of performance we need from these devices, and how we would characterize them.
 • Give you an overview of the materials that can be used for TFTs. Their respective pros and cons.
 • What we can do to optimize / improve TFTs.
 • How we can use TFTs as sensors / emitters, in circuits, for biological applications.
 • Some issues for flexible electronics.
TFT Operation

- We discussed the concept of thin-film transistors (TFTs) and their operation.

![TFT Diagram]

TFT Characterization

- Some details on how we measure / test TFTs.
- What are the figures of merits and how do we evaluate them?
Models

• How do we describe charge transport in systems without long range order?

Materials

- Silicon
- Oxides
- Organic Semiconductors
- Hybrid Halide Compounds
- Chalcogenides
- Carbon Systems
Growth Technique

- We talked about the different growth and deposition techniques for these materials.

Dielectrics / Electrodes

- We will discuss the other components of the TFT device: the dielectrics and electrodes.
Integrated Circuits

• We covered some very basic integrated circuits, how we characterize them and what we can do to improve them.

Ambipolar TFTs

• We talked about transistors that are capable of injecting and transporting both holes and electrons, and how we need to give them extra consideration.
Memory Devices

- How can we retain information over long periods of time in these systems?

Power

- How do we provide and store power for portable devices?
Phototransistors
• We can also use transistors for other functions such as light sensing.

Flexible Electronics
• We studied some of the specific problems of flexible electronics.
Biological Electronics

- Finally, we today talked briefly about how we can use thin-film electronics to interact with the human body.

My Course Objectives

- The goal for me was to provide the following:
 - The ability to understand and measure TFTs, and extract parameters from current-voltage characteristics.
 - Information about what semiconductor material system(s) are best suited for what particular application.
 - Some ideas about what you can do to optimize and improve TFTs.
 - An intuition about what TFTs are capable of, could possibly be capable of in the futures, and what they could never do.
- The goal was not the following:
 - Get you to memorize a load of formulae, acronyms, etc. you will forget immediately after the exams.
Thank You!