CS 261 – Data Structures

Big-Oh and Execution Time: A Review
Big-Oh: **Purpose**

A machine-independent way to describe execution time

Purpose of a big-Oh characterization is: to describe change in execution time relative to change in input size in a way that is independent of issues such as machine times or compilers
Big-Oh: Algorithmic Analysis

We want a method for determining the relative speeds of algorithms that:

– doesn’t depend upon hardware used (e.g., PC, Mac, etc.)
– the clock speed of your processor
– what compiler you use
– even what language you write in
Algorithmic Analysis

• Suppose that algorithm A processes n data elements in time T.

• Algorithmic analysis attempts to estimate how T is affected by changes in n. In other words, T is a function of n when we use A.
A Simple Example

• Suppose we have an algorithm that is $O(n)$ (e.g., summing elements of array)

• Suppose to sum 10,000 elements takes 32 ms.

• How long to sum 20,000 elements?

• If the size doubles, the execution time doubles
Non-Linear Times

• Suppose the algorithm is $O(n^2)$ (e.g., sum elements of a 2-D array)

• Suppose size doubles, what happens to execution time?
 • It goes up by 4
 • Why 4?

• Need to figure out how to do this …
The Calculation

The ratio of the big-Oh sizes should equal the ratio of the execution times

\[
\frac{n_1^2}{n_2^2} = \frac{t_1}{t_2}
\]

We increased \(n \) by a factor of two:

\[
\frac{n^2}{(2n)^2} = \frac{t}{x}
\]

then solve for \(x \)
A More Complex Problem

- Acme Widgets uses a merge sort algorithm to sort their inventory of widgets.

- If it takes 66 milliseconds to sort 4096 widgets, then approx. how long will it take to sort 1,048,576 widgets?

(Note: merge sort is $O(n \log n)$, 4096 is 2^{12}, and 1,048,576 is 2^{20}, and)
A More Complex Problem (cont.)

Setting up the formula:

\[\frac{n_1 \log n_1}{n_2 \log n_2} = \frac{t_1}{t_2} \rightarrow \frac{2^{12} \log 2^{12}}{2^{20} \log 2^{20}} = \frac{66 \text{ ms}}{x} \]

Solve for \(x \) (remember \(\log 2^y \) is just \(y \))
Determining Big Oh: Simple Loops

For simple loops, ask yourself how many times loop executes as a function of input size:

– Iterations dependent on a variable n
– Constant operations within loop

```c
double minimum(double data[], int n) {
    // Pre: values has at least one element.
    // Post: returns the smallest value in collection.

    int    i;
    double min = data[0];

    for(i = 1; i < n; i++)
        if(data[i] < min) min = data[i];

    return min;
}
```

$O(n)$
Determining Big Oh: **Not-So-Simple Loops**

Not always simple iteration and termination criteria

– Iterations dependent on a function of \(n \)
– Constant operations within loop
– Possibility of early exit:

```c
int isPrime(int n) {
  int i;
  for(i = 2; i * i < n; i++) {
    if (n % i == 0) return 0; // If \( i \) is a factor, then not prime.
  }
  return 1; // If loop exits without finding a factor \( \rightarrow n \) is prime.
}
```

\(O(\sqrt{n}) \)

But what happens if it exits early?
Best case?
Average case?
Worst case?
Determining Big Oh: **Nested Loops**

Nested loops (dependent or independent) multiply:

```c
void insertionSort(double arr[], unsigned int n) {
    unsigned i, j;
    double   elem;

    for(i = 1; i < n; i++) {
        // Move element arr[i] into place.
        elem = arr[i];
        for (j = i - 1; j >= 0 && elem < arr[j]; j--) {
            arr[j+1] = arr[j];  j--;
        }
        arr[j+1] = elem;
    }
}
```

Worst case (reverse order): \[1 + 2 + \ldots + (n-1) = \frac{n^2 - n}{2} \rightarrow O(n^2)\]
Determining Big Oh: Recursion

For recursion, ask yourself:

(a) How many times will function be executed?
(b) How much time does it spend on each call?

Multiply these together

def double exp(double a, int n) {
 if (n < 0) return 1 / exp(a, -n);
 if (n = 0) return 1;
 return a * exp(a, n - 1);
}

Not always as simple as above example:

Often easier to think about algorithm instead of code
Determining Big Oh: **Calling Functions**

When one function calls another, big-Oh of calling function also considers big-Oh of called function (and how many times embedded function(s) are called):

```c
void removeElement(double e, struct Vector *v) {
    int i = vectorSize(v);
    while (i-- > 0) {
        if (e == vectorGet(v, i)) {
            vectorRemove(v, i);
            return;
        }
    }
}
```

$\text{void removeElement(double } e, \text{ struct Vector } *v) \{ \text{ }
\text{int } i = \text{vectorSize}(v); \text{ }
\text{while } (i-- > 0) \text{ }
\text{if } (e == \text{vectorGet}(v, i)) \{ \text{ }
\text{vectorRemove}(v, i); \text{ }
\text{return; } \text{ }
\} \text{ }
\} \text{ }$
Determining Big Oh: Logarithmic

• I’m thinking of a number between 0 and 1024

• How many guesses do you need to find my number?

• Answer: approximately $\log 1024 = \log 2^{10} = 10$

• In algorithmic analysis, the log of n is the number of times you can split n in half (binary search, etc)
Summation and the Dominant Component

• A method’s running time is sum of time needed to execute sequence of statements, loops, etc. within method.

• For algorithmic analysis, the largest component dominates (and constant multipliers are ignored).

 – Function $f(n)$ dominates $g(n)$ if there exists a constant value n_0 such that for all values of $n > n_0$, $f(n) > g(n)$.

Example: analysis of a given method shows its execution time as $8n + 3n^2 + 23$.

Don’t write $O(8n + 3n^2 + 23)$ or even $O(n + n^2 + 1)$, but just $O(n^2)$.
void insertionSort (double v [], int n)
{
 for (int i = 1; i < n; i++) {
 double element = v[i];
 int j = i - 1;
 while (j >= 0 && element < v[j])
 {
 v[j+1] = v[j]; j = j - 1;
 }
 v[j+1] = element;
 }
} // normally we use worst case time
Computation Complexities

<table>
<thead>
<tr>
<th>Function</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n!$</td>
<td>Factorial</td>
</tr>
<tr>
<td>2^n (or c^n)</td>
<td>Exponential</td>
</tr>
<tr>
<td>n^d, $d > 3$</td>
<td>Polynomial</td>
</tr>
<tr>
<td>n^3</td>
<td>Cubic</td>
</tr>
<tr>
<td>n^2</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$n\sqrt{n}$</td>
<td></td>
</tr>
<tr>
<td>$n \log n$</td>
<td>Linear</td>
</tr>
<tr>
<td>n</td>
<td>Root- n</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log n$</td>
<td>Constant</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

![Graphs of various functions showing their growth rates](image)
Benchmarking

• Algorithmic analysis is the first and best way, but not the final word

• What if two algorithms are both of the same complexity?

• Example: bubble sort and insertion sort are both $O(n^2)$
 – So, which one is the “faster” algorithm?
 – Benchmarking: run both algorithms on the same machine
 – Often indicates the constant multipliers and other “ignored” components
 – Still, different implementations of the same algorithm often exhibit different execution times – due to changes in the constant multiplier or other factors (such as adding an early exit to bubble sort)
Let’s Practice: What is the O(??)

```c
int countOccurrences (double [ ] data, double testValue) {
    int count = 0;
    for (int i = 0; i < data.length; i++) {
        if (data[i] == testValue)
            count++;
    }
    return count;
}
```
O(??) in terms of n (worst case)

```c
int isPrime (int n) {
    for (int i = 2; i * i <= n; i++) {
        if (0 == n % i) return 0;
    }
    return 1; /* 1 is true */
}
```
Worst case $O(??)$

```c
void printPrimes (int n) {
    for (int i = 2; i < n; i++) {
        if (isPrime(i))
            printf("Value %d is prime\n", i);
    }
}
```
Nested Loops - $O(??)$

```c
void matMult (int [][] a, int [][] b, int [][] c) {
    int n = n; // assume all same size
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) {
            c[i][j] = 0;
            for (k = 0; k < n; k++)
                c[i][j] += a[i][k] * b[k][j];
        }
}
```
void selectionSort (double storage[], int n) {
 for (int p = n - 1; p > 0; p--) {
 int indexLargest = 0;
 for (int i = 1; i <= p; i++) {
 if (storage[i] > storage[indexLargest])
 indexLargest = i;
 }
 if (indexLargest != p)
 swap(storage, indexLargest, p);
 }
}
Reading & Worksheets

- Worksheet 9: Summing Execution Times
- Worksheet 10: Wall Clock Time Estimation

All due in recitation on Tuesday.