CS 261 – Data Structures

AVL Trees
Binary Search Tree

• Complexity of BST operations:
 – proportional to the length of the path from a node to the root

• Unbalanced tree: operations may be $O(n)$
 – E.g.: adding elements in a sorted order
Balanced Binary Search Tree

• Balanced tree: the length of the longest path is roughly $\log n$

• BALANCE IS IMPORTANT!
Complete Binary Tree is Balanced

• Has the smallest height for any binary tree with the same number of nodes

• The longest path guaranteed to be $\leq \log n$

• \Rightarrow Keep the tree complete
Requiring Complete Trees

• However, it is very costly to maintain a complete binary tree

Add to tree
Requiring Complete Trees

• However, it is very costly to maintain a complete binary tree
Height-Balanced Trees

• For each node, the height difference between the left and right subtrees is ≤ 1
Height-Balanced Trees

• Are locally balanced, but globally (slightly) unbalanced
Height-Balanced Trees

• Mathematically, the longest path has been shown to be, at worst, 44% longer than $\log n$.

• Algorithms that run in time proportional to the path length are still $O(\log n)$.

– Why?
AVL Trees

• Named after the inventors’ initials

• Maintain the height balanced property of Binary Search Trees
AVL Trees

• Add an integer height field to each node:
 – Null child has a height of –1
 – A node is *unbalanced* when the absolute height difference between the left and right subtrees is *greater than one*
struct AVLNode {
 TYPE val;
 struct AVLNode *left;
 struct AVLNode *right;
 int height; /* Height of node*/
};
int _height(struct AVLNode *cur)
{
 if(cur == 0)
 return -1
 else return cur->hght;
}
void _setHeight(struct AVLNode *cur) {
 int lh = _height(cur->left);
 int rh = _height(cur->rght);
 if(lh < rh)
 cur->hght = 1 + rh;
 else
 cur->hght = 1 + lh;
}
Maintaining the Height Balanced Property

- When unbalanced, performs a “rotation” to balance the tree
Left Rotation

1. Input: current = current node
2. New top node is current's right child

Rotate left

Current

New “top” node
Left Rotation

1. Input: \(\text{current} = \text{current node} \)
2. New top node is current's right child
3. New top’s left child = current

```
  1(0)  4(2)  6(0)
   /      /        /
 2(3)   5(1)   3(0)
```

```
  2(1)  5(1)  6(0)
   /      /        /
 4(2)   1(0)  3(0)
```

New “top” node
Left Rotation

1. **Input:** current = current node
2. New top node is current's right child
3. New top’s left child = current
4. Current’s new right child = new top node's left child
Left Rotation

1. Input: current = current node
2. New top node is current's right child
3. New top's left child = current
4. Current's new right child = new top node's left child
5. Set height of current
6. Set height of new top node
Right Rotation

1. **Input:** current = current node
2. New top node is current's left child
3. New top’s right child = current
4. Current’s new left child = new top node's right child
5. Set height of current
6. Set height of new top node
Double Rotation

• A single rotation may not fix the problem:
 – When the right child is heavy, i.e.,
 • its parent is unbalanced
 • has only a left subtree

Unbalanced “top” node

“Heavy” right child

1(2)

3(1)

2(0)

Rotate left

1(1)

3(2)

2(0)

Doesn’t work!!!
Double Rotation

• This case requires *rotating the child* before the regular rotation:

 1. Rotate the heavy right child to the **right**
 2. Rotate the “top” node to the **left**
Double Rotation

• A single rotation may not fix the problem:
 – When the left child is heavy, i.e.,
 • its parent in unbalanced from the left
 • has only a right subtree

Unbalanced “top” node

“Heavy” left child

Rotate left

Doesn’t work!!!
Double Rotation

• This case requires *rotating the child* before the regular rotation:

1. Rotate the heavy left child to the **left**
2. Rotate the “top” node to the **right**
Balancing an Unbalanced Top Node

If left child of the top node is taller than the right child{

 If left child is heavy on the right side{
 /* Double rotation */
 Rotate left the heavy left child
 }

 Rotate right the “top” node

} else{

 ...

}

Return new “top” node
Balancing an Unbalanced Top Node

If left child of the top node is taller than the right child{

 ...

} else{

 If right child is heavy on the left side{

 /* Double rotation */

 Rotate right the heavy right child

 }

 Rotate left the “top” node

} Return new “top” node
Example: Add 7 to the tree

Height-Balanced Tree

```
    3(3)
   /   \
  2(1) 8(2)
 /     /   \
1(0) 5(1) 9(0)
 /     /     \
4(0) 6(0)     \
```

Unbalanced Tree

```
    3(4)
   /   \
  2(1) 8(3)
 /     /   \
1(0) 5(2) 9(0)
 /     /     \
4(0) 6(1) 7(0)
```

Add data: 7

- **Add data:** 7
- **Height-Balanced Tree:**
 - Added to right side of heavy left child
- **Unbalanced Tree:**
 - "Heavy" left child
 - Added to right side of heavy left child

Unbalanced "top" node
Example – Suppose We Used Single Rotation

Unbalanced Tree

Single rotation

Tree Still Unbalanced

Unbalanced “top” node (still)
Example – Double Rotation

Unbalanced Tree

Tree Still Unbalanced, but ...

Rotate right the heavy left child

“Heavy” left child
Example – Double Rotation

Unbalanced Tree (after 1st rotation)

Tree Now Balanced

Rotate left top node

Unbalanced “top” node
AVL Trees: Sorting

• An AVL tree can sort a collection of values:

 1. Copy data into the AVL tree: $O(??)$

 2. Copy them out using the ?? traversal: $O(??)$
AVL Trees: Sorting

• An AVL tree can sort a collection of values:

 Copy data into the AVL tree:
 \[O(n \log_2 n) \]

 Copy them out using the **in-order** traversal:
 \[O(n) \]
AVL Trees: Sorting

• Execution time $\Rightarrow O(n \log n)$:
 – Matches that of quick sort in benchmarks
 – Unlike quick sort, AVL trees don’t have problems if data is already sorted or almost sorted (which degrades quick sort to $O(n^2)$)

• However, requires extra storage to maintain both the original data buffer (e.g., a DynArr) and the tree structure
Your Turn

• Any questions

• Worksheet:
 – Start by inserting values 1-7 into an empty AVL tree
 – Then write code for left and right rotations