CS 275: Introduction to Databases

Functional Dependencies

- Formal tool for analysis of relational schemas
- Enables us to detect and describe some problems in precise terms
- Theory of functional dependency

Definition of Functional Dependency

- Constraint between two sets of attributes from the database

 Definition. A functional dependency, denoted by \(X \rightarrow Y \), between two sets of attributes \(X \) and \(Y \) that are subsets of \(R \) specifies a constraint on the possible tuples that can form a relation state of \(R \). The constraint is that, for any two tuples \(t_1 \) and \(t_2 \) in \(r \) that have \(t_1[X] = t_2[X] \), they must also have \(t_1[Y] = t_2[Y] \).
- Property of semantics or meaning of the attributes
- Legal relation states
 - Satisfy the functional dependency constraints
Definition of Functional Dependency (cont.)

- A set of attributes X functionally determines a set of attributes Y if the value of X uniquely determines the values of Y
- If two tuples have the same X values, then they must have the same Y values
- A set of attributes Y is functionally dependent on the set of attributes X.

Functional Dependencies

- For instance:
 - SSN->ENAME
 - PNUMBER->{PNAME, PLOCATION}
 - {SSN, PNUMBER}->HOURS

Functional Dependencies

- Given a populated relation
 - Cannot determine which FDs hold and which do not
 - Can state that FD does not hold if there are tuples that show violation of such an FD
Normalization of Relations

- Takes a relation schema through a series of tests
 - Certify whether it satisfies a certain normal form
 - Proceeds in a top-down fashion

- Normal form tests

 Definition: The normal form of a relation refers to the highest normal form condition that it meets, and hence indicates the degree to which it has been normalized.

Normalization of Relations (cont’d.)

- Properties that the relational schemas should have:
 - Nonadditive join property
 - Extremely critical
 - Dependency preservation property
 - Desirable but sometimes sacrificed for other factors

Normalization of Relations (cont’d.)

- Normalization: the process of decomposing unsatisfactory relations by breaking their attributes into smaller ones
- Normal form: condition using keys and FDs of a relation to certify whether a relation scheme is in a particular form
First Normal Form

- Part of the formal definition of a relation in the basic (flat) relational model
- Only attribute values permitted are single atomic (or indivisible) values
- Techniques to achieve first normal form
 - Remove attribute and place in separate relation
 - Expand the key
 - Use several atomic attributes

1NF

Definitions of Keys and Attributes Participating in Keys

- Definition of superkey and key
- Candidate key
 - If more than one key in a relation schema
 - One is primary key
 - Others are secondary keys

Definition. An attribute of relation schema R is called a prime attribute of R if it is a member of some candidate key of R. An attribute is called nonprime if it is not a prime attribute—that is, if it is not a member of any candidate key.
Second Normal Form

- Based on concept of **full functional dependency**
 - Versus **partial dependency**
 - Definition: A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary key of R.
- Second normalize into a number of 2NF relations
 - Nonprime attributes are associated only with part of primary key on which they are fully functionally dependent

2NF

- Examples:
 - $\{\text{SSN}, \text{Pnumber}\} \rightarrow \text{Hours}$ is full.
 - $\{\text{SSN}\} \rightarrow \text{EName}$ is *not* full.

Third Normal Form

- Based on concept of transitive dependency
 - Definition: According to Codd's original definition, a relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent on the primary key.
- Problematic FD
 - Left-hand side is part of primary key
 - Left-hand side is a nonkey attribute
3NF

Examples:
- SSN->DMgrSSN is a transitive FD since SSN->DNumber and DNumber->DMgrSSN hold.
- SSN->EName is non-transitive since there is no X such that SSN->X and X->EName.

General Definitions

- Above definitions only consider primary key.

- General definitions:
 - A relation schema R is in 2NF if every nonprime attribute is fully functionally dependent on every key of R.
 - A relation schema R is in 3NF if whenever a FD X->A holds, then either X is a superkey or A is a prime attribute.
A relation schema R is in BCNF if whenever FD X→A holds in R, then X is a superkey of R.

2NF is stronger than 1NF.
3NF is stronger than 2NF.
BCNF is stronger than 3NF.
General Definitions of Second and Third Normal Forms

<table>
<thead>
<tr>
<th>Normal Form</th>
<th>Text</th>
<th>Normality (Normalization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First (1NF)</td>
<td>Relation should have no non-key attributes or nested relations.</td>
<td>Decompose and set up a new relation for each non-key attribute or nested relation.</td>
</tr>
<tr>
<td>Second (2NF)</td>
<td>For relations where primary key contains multiple attributes, no non-key attribute should be functionally dependent on a part of the primary key.</td>
<td>Decompose and set up a new relation for each non-key attribute that is functionally dependent on a part of the primary key.</td>
</tr>
<tr>
<td>Third (3NF)</td>
<td>Relation should not have a non-key attribute functionally determined by another non-key attribute (or by a set of non-key attributes). That is, there should be no transitive dependency of a non-key attribute on the primary key.</td>
<td>Decompose and set up a new relation that includes the non-key attribute(s) that functionally determine(s) the non-key attribute(s).</td>
</tr>
</tbody>
</table>

Table 15.1: Summary of Normal Forms Based on Primary Keys and Corresponding Normalization