CS 331: Artificial Intelligence
Intelligent Agents

Example: Vacuum Cleaner Agent

<table>
<thead>
<tr>
<th>Percept Sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, Clean)</td>
<td>Right</td>
</tr>
<tr>
<td>(B, Dirty)</td>
<td>Suck</td>
</tr>
<tr>
<td>(A, Clean)</td>
<td>Left</td>
</tr>
<tr>
<td>(B, Dirty)</td>
<td>Suck</td>
</tr>
<tr>
<td>(A, Clean), (A, Clean)</td>
<td>Right</td>
</tr>
<tr>
<td>(A, Clean), (A, Dirty)</td>
<td>Suck</td>
</tr>
<tr>
<td>(A, Clean), (A, Clean), (A, Clean)</td>
<td>Right</td>
</tr>
<tr>
<td>(A, Clean), (A, Clean), (A, Dirty)</td>
<td>Suck</td>
</tr>
</tbody>
</table>

Agent-Related Terms

- **Percept sequence**: A complete history of everything the agent has ever perceived. Think of this as the state of the world from the agent’s perspective.
- **Agent function (or Policy)**: Maps percept sequence to action (determines agent behavior)
- **Agent program**: Implements the agent function

Question du Jour

What’s the difference between the agent function and the agent program?

Rationality

- **Rationality**: do the action that causes the agent to be most successful
- **How do you define success?** Need a performance measure
- **Eg. reward agent with one point for each clean square at each time step (could penalize for costs and noise)**

Important point: Design performance measures according to what one wants in the environment, not according to how one thinks the agent should behave
Rationality

Rationality depends on 4 things:
1. Performance measure of success
2. Agent’s prior knowledge of environment
3. Actions agent can perform
4. Agent’s percept sequence to date

Rational agent: for each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Learning

Successful agents split task of computing policy in 3 periods:
1. Initially, designers compute some prior knowledge to include in policy
2. When deciding its next action, agent does some computation
3. Agent learns from experience to modify its behavior

Autonomous agents: Learn from experience to compensate for partial or incorrect prior knowledge.

PEAS Descriptions of Agents

Performance, Environment, Actuators, Sensors

Example: Automated taxi driver

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, fast, legal, comfortable trip, maximize profits</td>
<td>Roads, other pedestrians, customers</td>
<td>Steering, accelerator, brake, signal, horn, display</td>
<td>Camera, sensor, speedometer, GPS, ultrasonic, accelerometer, engine sensors, keyboard</td>
</tr>
</tbody>
</table>

Properties of Environments

<table>
<thead>
<tr>
<th>Observable</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully observable: can access complete state of environment at each point in time</td>
<td>Partially observable: could be due to noisy, inaccurate or incomplete sensor data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterministic: if next state of the environment completely determined by current state and agent’s action</td>
<td>Stochastic: a partially observable environment can appear to be stochastic. (Strategic: environment is deterministic except for actions of other agents)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episode: agent’s experience divided into independent, atomic episodes in which agent perceives and performs a single action in each episode</td>
<td>Sequential: current decision affects all future decisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic: agent doesn’t need to keep sensing while deciding what action to take, doesn’t need to worry about time</td>
<td>Dynamic: environment changes while agent is thinking</td>
<td>Semi-dynamic: environment doesn’t change with time but agent’s performance does</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete: one discrete/continuous distinction applies to state, time, percepts, or actions</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single agent</td>
<td>Multiagent: agents affect each others’ performance measure – cooperative or competitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples of task environments

<table>
<thead>
<tr>
<th>Task Environment</th>
<th>Observable</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossword puzzle</td>
<td>Fully</td>
<td>Deterministic</td>
<td>Sequential</td>
<td>Static</td>
<td>Discrete</td>
<td>Single</td>
</tr>
<tr>
<td>Chess with a clock</td>
<td>Fully</td>
<td>Strategic</td>
<td>Sequential</td>
<td>Semi</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
<tr>
<td>Poker Backgammon</td>
<td>Partially</td>
<td>Partially stochastic</td>
<td>Sequential</td>
<td>Static</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
<tr>
<td>Taxi driving</td>
<td>Partially</td>
<td>Partially stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Multi</td>
</tr>
<tr>
<td>Medical Diagnosis</td>
<td>Partially</td>
<td>Partially stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Multi</td>
</tr>
<tr>
<td>Image analysis</td>
<td>Fully</td>
<td>Deterministic</td>
<td>Episodic</td>
<td>Semi</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Part-picking robot</td>
<td>Fully</td>
<td>Partially stochastic</td>
<td>Episodic</td>
<td>Semi</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Refinery controller</td>
<td>Partially</td>
<td>Partially stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Interactive English tutor</td>
<td>Partially</td>
<td>Partially stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
</tbody>
</table>

Agent Programs

- Agent program: implements the policy
- Simplest agent program is a table-driven agent

```python
function TABLE-DRIVEN-AGENT(percept) returns an action
  static: percepts, a sequence, initially empty
  table, a table of actions, indexed by percept sequences, initially fully specific
  append percept to the end of percepts
  action ← LOOKUP(percepts, table)
  return action
```

This is a BIG table...clearly not feasible!
4 Kinds of Agent Programs

- Simplex reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

Simple Reflex Agent

- Selects actions using only the current precept
- Works on condition-action rules:
 \[
 \text{if } \text{condition} \text{ then } \text{action}
 \]

Simple Reflex Agents

- Advantages:
 - Easy to implement
 - Uses much less memory than the table-driven agent
- Disadvantages:
 - Will only work correctly if the environment is fully observable
 - Infinite loops

Model-based Reflex Agents

- Maintain some internal state that keeps track of the part of the world it can’t see now
- Needs model (encodes knowledge about how the world works)

Model-based Reflex Agents

- Function definition:
 \[
 \text{function } \text{REFLEX-AGENT-WITH-STATE}(\text{percept}) \text{ returns an action}
 \]

- Static variables:
 - state: a description of the current world state
 - rules: a set of condition-action rules
 - action: the most recent action, initially none

- Action selection:
 \[
 \text{state} \leftarrow \text{UPDATE-STATE}(\text{state}, \text{action}, \text{percept})
 \]
 \[
 \text{rule} \leftarrow \text{RULE-MATCH}(\text{state}, \text{rules})
 \]
 \[
 \text{action} \leftarrow \text{RULE-ACTION}(\text{rule})
 \]
 \[
 \text{return action}
 \]
Goal-based Agents

- Goal information guides agent’s actions (looks to the future)
- Sometimes achieving goal is simple e.g. from a single action
- Other times, goal requires reasoning about long sequences of actions
- Flexible: simply reprogram the agent by changing goals

Utility-based Agents

- What if there are many paths to the goal?
- Utility measures which states are preferable to other state
- Maps state to real number (utility or “happiness”)

Learning Agents

- Responsible for improving the agent’s behavior with experience
- Suggest actions to come up with new and informative experiences

Critic: Tells learning element how well the agent is doing with respect to the performance standard (because the percepts don’t tell the agent about its success/failure)
Learning Agents

Think of this as outside the agent since you don't want it to be changed by the agent.

Maps percepts to actions

Performance standard

What you should know

• What it means to be rational
• Be able to do a PEAS description of a task environment
• Be able to determine the properties of a task environment
• Know which agent program is appropriate for your task

In-class Exercise

Develop a PEAS description of the task environment for a face-recognition agent

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
</table>

In-class Exercise

Describe the task environment

<table>
<thead>
<tr>
<th>Fully Observable</th>
<th>Partially Observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Stochastic</td>
</tr>
<tr>
<td>Episodic</td>
<td>Sequential</td>
</tr>
<tr>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Discrete</td>
<td>Continuous</td>
</tr>
<tr>
<td>Single agent</td>
<td>Multi-agent</td>
</tr>
</tbody>
</table>

In-class Exercise

• Select a suitable agent design for the face-recognition agent