Without facts, the decision cannot be made logically.

Knowledge-based Agents

- Can represent knowledge
- And reason with this knowledge
- How is this different from the knowledge used by problem-specific agents?
 - More general
 - More flexible
Outline

1. Knowledge-based Agents
2. The Wumpus World
3. Logic

Knowledge-based Agents

- Knowledge of problem solving agents is specific and inflexible
- Knowledge-based agents can benefit from knowledge expressed in very general forms, combining information in different ways to suit different purposes
- Knowledge-based agents can combine general knowledge with current percepts to infer hidden aspects of the current state
Knowledge-based Agents

Flexibility of knowledge-based agents:
• Accept new tasks in the form of explicitly described goals
• Achieve competence quickly by being told or learning new knowledge about the environment
• Adapt to changes in the environment by updating the relevant knowledge

Knowledge is definite

• Knowledge of logical agents is always definite
• That is, each proposition is entirely true or entirely false
• Agent may be agnostic about some propositions
• Logic doesn’t handle uncertainty well
The Knowledge Base (KB)

- A knowledge base is a set of “sentences”
- Each sentence is expressed in a knowledge representation language and represents some assertion about the world

![Knowledge Base Diagram]

The Knowledge Base (KB)

- Need to add new sentences to the knowledge base (this task is called TELL)
- Need to query what is known (this task is called ASK)
Knowledge Base Example

- Victim was Professor Plum
- Murderer wasn’t Colonel Mustard
- Murderer wasn’t Miss Scarlett
- Weapon wasn’t the Gun
- Weapon wasn’t the Candlestick
- Room wasn’t the Library

When you discover a new fact like “The murder room wasn’t the study”, you would TELL the KB
You can then ASK the KB what to ask next

Inference

- Inference: deriving new sentences from old ones
- Must obey fundamental requirement: when one ASKs a question of the knowledge base, answer should follow from what has been TELLed to the KB previously
A Generic Knowledge-based Agent

Input: Percept

Knowledge Base

Output: Action

A Generic Knowledge-based Agent

Input: Percept

Knowledge Base

Output: Action

Starts out with background knowledge
A Generic Knowledge-based Agent

Input: Percept

1. TELL the KB what it perceives
2. ASK the KB what action it should perform
3. TELL the KB that the action was executed

Output: Action

The Wumpus World

- Wumpus eats anyone that enters its room
- Wumpus can be shot by an agent, but agent has one arrow
- Pits trap the agent (but not the wumpus)
- Agent’s goal is to pick up the gold
The Wumpus World

- **Performance measure:**
 - +1000 for picking up gold, -1000 for death
 - -1 for each action taken, -10 for using arrow
- **Environment:**
 - 4x4 grid of rooms
 - Agent starts in (1,1) and faces right
 - Geography determined at the start:
 - Gold and wumpus locations chosen randomly
 - Each square other than start can be a pit with probability 0.2

The Wumpus World

- **Actuators:**
 - Movement:
 - Agent can move forward
 - Turn 90 degrees left or right
 - Death for meeting a live wumpus or falling into a pit
 - Grab: pick up an object in same square
 - Shoot: fire arrow in straight line in the direction agent is facing
The Wumpus World

• **Sensors:**
 – Returns a 5-tuple of five symbols eg. [stench, breeze, glitter, bump, scream] (note that in this 5-tuple, all five things are present. We indicate absence with the value None)
 – In squares adjacent to the wumpus, agent perceives a stench
 – In squares adjacent to a pit, agent perceives a breeze
 – In squares adjacent to the gold, agent perceives a glitter
 – When agent walks into a wall, it perceives a bump
 – When wumpus is killed, it emits a woeful scream that is perceived anywhere

The Wumpus World

• Biggest challenge: Agent is ignorant of the configuration of the 4x4 world
• Needs logical reasoning of percepts in order to overcome this ignorance
• Note: retrieving gold may not be possible due to randomly generated location of pits
• Initial knowledge base contains:
 – Agent knows it is in [1,1]
 – Agent knows it is a safe square
The Wumpus World Environment Properties

- Fully or Partially observable?
- Deterministic or stochastic (in terms of actions)?
- Episodic or sequential?
- Static or dynamic?
- Discrete or continuous?
- Single agent or multiagent?
Wumpus World Example

1st percept is:
[None, None, None, None, None]
(Corresponding to [Stench, Breeze, Glitter, Bump, Scream])

Agent concludes squares [1,2], [2,1] are safe. We mark them with OK. A cautious agent will move only to a square that it knows is OK.

Agent now moves to [2,1]

Wumpus World Example

2nd percept is:
[None, Breeze, None, None, None]

Must be a pit at [2,2] or [3,1] or both. We mark this with a P?.

Only one square that is OK, so the agent goes back to [1,1] and then to [1,2]
Wumpus World Example

3rd percept is:
[Stench, None, None, None, None]

Wumpus must be nearby. Can’t be in [1,1] (by rules of the game) or [2,2] (otherwise agent would have detected a stench at [2,1])

Therefore, Wumpus must be in [1,3].

Indicate this by W!

Lack of breeze in [1,2] means no pit in [2,2], so pit must be in [3,1].

Wumpus World Example

Note the difficulty of this inference:
• Combines knowledge gained at different times and at different places.
• Relies on the lack of a percept to make one crucial step

At this point, the agent moves to [2,2].
Wumpus World Example

We’ll skip the agent’s state of knowledge at [2,2] and assume it goes to [2,3].

Agent detects a glitter in [2,3] so it grabs the gold and ends the game.

Note: In each case where the agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct.

<table>
<thead>
<tr>
<th>1.4</th>
<th>2.4</th>
<th>3.4</th>
<th>4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W:</td>
<td>A</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>S</td>
<td>G</td>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>V</td>
<td>2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>V</td>
<td>2.1</td>
<td>3.1</td>
</tr>
<tr>
<td>V</td>
<td>B</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A = Agent
- B = Breeze
- G = Glitter, Gold
- OK = Safe, square
- P = Pit
- S = Steach
- V = Visited
- W = Wumpus

Logic

Logic must define:

1. **Syntax of the representation language**
 - Symbols, rules, legal configurations
2. **Semantics of the representation language**
 - Loosely speaking, this is the “meaning” of the sentence
 - Defines the truth of each sentence with respect to each possible world
 - Everything is either true or false, no in between
Models

- We will use the word model instead of “possible world”
- “m is a model of α” means that sentence α is true in model m
- Models are mathematical abstractions which fixes the truth or falsehood of every relevant sentence
- Think of it as the possible assignments of values to the variables
 - Eg. the possible models for $x + y = 4$ are all possible assignments of numbers to x and y such that they add up to 4

Entailment

$\alpha \models \beta$ means α entails β ie. β follows logically from α, where α and β are sentences

Mathematically, $\alpha \models \beta$ if and only if in every model in which α is true, β is also true.

Another way: if α is true, then β must also be true.
Entailment Applied to the Wumpus World

- Suppose the agent moves to [2,1]
- Agent knows there is nothing in [1,1] and a breeze in [2,1]
- These percepts, along with the agent’s knowledge of the rules of the wumpus world constitute the KB
- Given this KB, agent is interested if the adjacent squares [1,2], [2,2] and [3,1] contain pits.

2^3 = 8 possible models because [1,2], [2,2] and [3,1] can take each take values true or false that there is a pit there

We do not show models that contradict the KB eg. models that say that [1,2] contains a pit

The 3 models inside the line marked KB are those in which the KB is true
Entailment Applied to the Wumpus World

Let us consider the models that support the conclusion $\alpha_1 = \text{“There is no pit in [1,2].”}$ We draw a line marked with α_1 around these models.

In every model in which KB is true, α_1 is also true. Therefore KB $\models \alpha_1$.

Entailment applied to the Wumpus World

Now let us consider the models that support the conclusion $\alpha_2 = \text{“There is no pit in [2,2].”}$ We draw a line marked with α_2 around these models.

In some models in which KB is true, α_2 is false. Therefore KB $\not\models \alpha_2$ and the agent cannot conclude that there is a pit in [2,2].
Logical inference

• Entailment can be applied to derive conclusions (we call this carrying out logical inference)
• Model checking: enumerates all possible models to check that α is true in all models in which KB is true
• If an inference algorithm i can derive α from the KB, we write $\text{KB} \vdash_i \alpha$
• The above is pronounced “α is derived from KB by i” or “i derives α from KB”

Soundness

• An inference algorithm that derives only entailed sentences is called sound or truth-preserving
• Soundness is a good thing!
• If an inference algorithm is unsound, you can make things up as it goes along and derive basically anything it wants to

This (unsoundness) is most illogical
Completeness

• An inference algorithm is complete if it can derive any sentence that is entailed.
• For some KBs, the number of sentences can be infinite.
• Can’t exhaustively check all of them, need to rely on proving completeness.

In Summary

• Soundness: i is sound if whenever KB |- i α, it is also true that KB |= α.
• Completeness: i is complete if whenever KB |= α, it is also true that KB |- i α.
Correspondence to the Real World

If the KB is true in the real world, then any sentence α derived from the KB by a sound inference procedure is also true in the real world.

Grounding

- Defined as the connection, if any, between logical reasoning processes and the real environment in which the agent exists
- How do we know that the KB is true in the real world?
- Deep philosophical question
- We’ll respond with the following:
 - Rely on sensors to accurately perceive the world
 - Learning produces general rules (derived from perceptual experience). Learning can be fallible but it has the potential to fix its mistakes.
Things you should know

• Properties of a knowledge-based agent
• What a knowledge-base is
• What entailment and inference mean
• Desirable properties of inference algorithms such as soundness and completeness