Background: Maximum Likelihood Estimation

CS534
Parameter Estimation

• Given observation of some random variable(s), assuming the variable(s) follow some fixed distribution, how to estimate the parameters?

• Example:
 – coin tosses (Bernoulli distribution, parameter: \(p \) – probability of head)
 – Dice or grades (Discrete distribution, parameters: \(p_i \) for \(i = 1, \ldots, k - 1 \) with \(k \) categories)
 – Height and weight of a person (continuous variable, parameters depends on the distribution, for example for Gaussian Distribution, the parameters are \(\mu \), the mean and \(\Sigma \), the covariance)
Maximum Likelihood Principle

• We will use a general term M to denote the model (parameters) we try to estimate

• We will use a general term D to denote the data that we observe
 – D is a set of examples, let D_m denote the m-th example in D

• Assuming a fixed model M, what is the probability of observing D?
 – This can be written as $P(D; M)$

• The maximum likelihood principle seeks to find M that maximizes this probability

• This is called the likelihood function
 – $L(M) = P(D; M) = \prod_{m=1}^{n} P(D_m; M)$ --- here we are making the IID assumption, that is examples in D are independently and identically distributed, thus we can use the product

• It is often more convenient to work with the log of $L(M)$
 – $l(M) = \log L(M) = \sum_{m=1}^{n} \log P(D_m; M)$
Example: Coin Toss

• You are given a coin, and want to decide p - the probability of head of this coin
• You toss it for 500 times, and observe heads 242 times
• What is your estimate of p?

$$p = \frac{242}{500} = 0.484$$

• But why? – this is doing maximum likelihood estimation
• In other words, $p = 0.484$ leads to the highest probability of observing 242 heads out of 500 tosses
• Now let’s go over the math to convince ourselves
Example Cont.

- We have $D = \{x_1, \ldots, x_m\}$, where x_m is the outcome of the m-th coin toss,
 - 1 means head, and 0 means tail
- Let's write down the likelihood function: $L(p) = P(D; p) = \prod_{m=1}^{n} P(x_m; p)$
- For binary variable, we have a nice compact form to write down its probability mass function $P(x_m; p) = p^{x_m} (1 - p)^{1-x_m}$
- So we have

\[
L(p) = \prod_{m=1}^{n} p^{x_m} (1 - p)^{1-x_m}
\]

- Take the log:

\[
l(p) = \log L(p) = \sum_{m=1}^{n} \log p^{x_m} (1 - p)^{1-x_m}
\]

\[
= \sum_{m=1}^{n} x_m \log p + \sum_{m=1}^{n} (1 - x_m) \log(1 - p) = n_1 \log p + n_0 \log(1 - p)
\]

\[
n_1 = \sum_{m=1}^{n} x_m \text{ and } n_0 = n - n_1
\]
Maximizing the likelihood

- We take derivative of $l(p)$:
 \[
 \frac{dl(p)}{dp} = \frac{n_1}{p} - \frac{n_0}{1-p}
 \]
- Setting it to zero:
 \[
 \frac{n_1}{p} = \frac{n_0}{1-p}
 \]
- Solving this leads to:
 \[
 p = \frac{n_1}{n}
 \]