Computer Reliability

Introduction

• Computer systems are sometimes unreliable
 – Erroneous information in databases
 – Misinterpretation of database information
 – Malfunction of embedded systems
• Effects of computer errors
 – Inconvenience
 – Bad business decisions
 – Fatalities
Data-Entry or Data-Retrieval Errors

• A computerized system may fail because wrong data entered into it
• A computerized system may fail because people incorrectly interpret data they retrieve
Genesis of the Therac-25

- AECL and CGR built Therac-6 and Therac-20
- Therac-25 built by AECL
 - PDP-11 an integral part of system
 - Hardware safety features replaced with software
 - Reused code from Therac-6 and Therac-20
- First Therac-25 shipped in 1983
 - Patient in one room
 - Technician in adjoining room
Software Errors

- Race condition: order in which two or more concurrent tasks access a shared variable can affect program’s behavior
- Two race conditions in Therac-25 software
 - Command screen editing
 - Movement of electron beam gun

Post Mortem

- AECL focused on fixing individual bugs
- System not designed to be fail-safe
- No devices to report overdoses
- Software lessons
 - Difficult to debug programs with concurrent tasks
 - Design must be as simple as possible
 - Documentation crucial
 - Code reuse does not always lead to higher quality
- AECL did not communicate fully with customers
Moral Responsibility of the Therac-25 Team

- Conditions for moral responsibility
 - Causal condition: actions (or inactions) caused the harm
 - Mental condition
 - Actions (or inactions) intended or willed -OR-
 - Moral agent is careless, reckless, or negligent
- Therac-25 team morally responsible
 - They constructed the device that caused the harm
 - They were negligent

Shrinkwrap Warranties

- Some say you accept software “as is”
- Some offer 90-day replacement or money-back guarantee
- None accept liability for harm caused by use of software
Moral Responsibility of Software Manufacturers

- If vendors were responsible for harmful consequences of defects
 - Companies would test software more
 - They would purchase liability insurance
 - Software would cost more
 - Start-ups would be affected more than big companies
 - Less innovation in software industry
 - Software would be more reliable

- Making vendors responsible for harmful consequences of defects may be wrong

- Consumers should not have to pay for bug fixes

Software Quality

- Standish Group tracks IT projects
- Situation in 1994
 - 1/3 projects cancelled before completion
 - 1/2 projects had time and/or cost overruns
 - 1/6 projects completed on time / on budget

- Situation in 2006
 - 1/6 projects cancelled
 - 1/2 projects had time and/or cost overruns
 - 1/3 projects completed on time / on budget
Motivation for Online Voting

- 2000 U.S. Presidential election closely contested
- Florida pivotal state
- Most Florida counties used keypunch voting machines
- Two voting irregularities traced to these machines
 - Hanging chad
 - "Butterfly ballot" in Palm Beach County

Benefits of Online Voting

- More people would vote
- Votes would be counted more quickly
- No ambiguity with electronic votes
- Cost less money
- Eliminate ballot box tampering
- Software can prevent accidental over-voting
- Software can prevent under-voting
Risks of Online Voting

- Gives unfair advantage to those with home computers
- More difficult to preserve voter privacy
- More opportunities for vote selling
- Obvious target for a DDoS attack
- Security of election depends on security of home computers
- Susceptible to vote-changing virus or RAT
- Susceptible to phony vote servers
- No paper copies of ballots for auditing or recounts

Death of a Librarian – June 2005

- Wolf Djupedal is a librarian at a new national Norwegian library
- He has catalogued an important new collection – 14,000 books & magazines
- Does as he is supposed to, backs up & encrypts data for security purposes
- Dies without telling anyone password

- Incredibly common problem

- Lessons?

More: http://www.computerworld.com/securitytopics/security/encryption/story/0,10801,71721,00.html
Bad passwords

- In 2009 RockYou.com accidentally released 32 million passwords
- Most people are very bad at picking passwords unless coached

Password Popularity - Top 20

<table>
<thead>
<tr>
<th>Rank</th>
<th>Password</th>
<th>Number of Users with Password (absolute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123456</td>
<td>290731</td>
</tr>
<tr>
<td>2</td>
<td>12345</td>
<td>79078</td>
</tr>
<tr>
<td>3</td>
<td>123456789</td>
<td>76790</td>
</tr>
<tr>
<td>4</td>
<td>Password</td>
<td>61958</td>
</tr>
<tr>
<td>5</td>
<td>iloveyou</td>
<td>51622</td>
</tr>
<tr>
<td>6</td>
<td>princess</td>
<td>35231</td>
</tr>
<tr>
<td>7</td>
<td>rockyou</td>
<td>22588</td>
</tr>
<tr>
<td>8</td>
<td>1234567</td>
<td>21726</td>
</tr>
<tr>
<td>9</td>
<td>12345678</td>
<td>20553</td>
</tr>
<tr>
<td>10</td>
<td>abc123</td>
<td>17542</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Password</th>
<th>Number of Users with Password (absolute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Nicole</td>
<td>17168</td>
</tr>
<tr>
<td>12</td>
<td>Daniel</td>
<td>16409</td>
</tr>
<tr>
<td>13</td>
<td>babygirl</td>
<td>16094</td>
</tr>
<tr>
<td>14</td>
<td>monkey</td>
<td>15294</td>
</tr>
<tr>
<td>15</td>
<td>Jessica</td>
<td>15162</td>
</tr>
<tr>
<td>16</td>
<td>Lovely</td>
<td>14950</td>
</tr>
<tr>
<td>17</td>
<td>michael</td>
<td>14898</td>
</tr>
<tr>
<td>18</td>
<td>Ashley</td>
<td>14329</td>
</tr>
<tr>
<td>19</td>
<td>654321</td>
<td>13984</td>
</tr>
<tr>
<td>20</td>
<td>Qwerty</td>
<td>13856</td>
</tr>
</tbody>
</table>

Software Engineering

Failures
Ariane 5 Flight 501 – June 4 1996

- Maiden flight of new launch vehicle, much larger and powerful than old Ariane 4.

- Cost and reliability a factor, a lot of technology was re-used from Ariane 4
 - Less costly than developing new
 - Was already tested and proven
 - In most cases the old technology was good enough

Result: http://www.youtube.com/watch?v=lONcgYzVFlg

Ariane 5 Flight 501 – Post-mortem

- Often dubbed the worlds most expensive software bug ($370 millions)

- Unhandled exception in data conversion (64-bit Float to 16 bit signed Integer) led inertial guidance computer to crash

- What went wrong?
Mars climate orbiter
Sept 23 1999

- Designed to study weather on Mars, serve as relay for all other Mars probes
- Reached Mars properly, started descent into orbit
 - Was meant to orbit at 140-150km height
 - Attempted to enter orbit at 57km
 - Burned on entry as result
- Total cost of both Orbiter and Lander: $327 million
- More: http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Mars climate orbiter
Sept 23 1999

What went wrong?
 - Metric vs. Imperial

- NASA specified thrust in Newtons (Metric), contractor assumed Pound Force (Imperial)
 - 1 pound force = 4.45 Newtons
 - On entry, thrusters fired much longer than needed
- Software had been adapted from Mars Climate Orbiter, without proper testing before launch
Airbus 320

First delivered in 1988, the A320 pioneered the use of digital fly-by-wire flight control systems in a commercial aircraft.

Designed to help avoid pilot error – main cause of accidents

Included safety controls for reverse thrust:

- To ensure that the thrust-reverse system and the spoilers are only activated in a landing situation, all of the following have to be true for the software to deploy these systems:
 - there must be weight of over 12 tons on each landing gear strut
 - the wheels of the plane must be turning faster than 133 km/h
 - the thrust levers must be in the idle (or reverse thrust) position

Lufthansa Flight 2904 – Sept 14 1993

- Lufthansa flight from Frankfurt into Warsaw on an Airbus 320-200
- Reports of some wind shear and rain, so pilots follow textbook procedure
 - Slightly higher landing speed
 - Come in slightly sideways

Brakes fail to deploy until too late, runs out of runway, copilot and 1 passenger die

Lufthansa Flight 2904 – Post Mortem

What went wrong?

Requirements:
- there must be weight of over 12 tons on each landing gear strut
- the wheels of the plane must be turning faster than 133 km/h
- the thrust levers must be in the idle (or reverse thrust) position

Windows Vista

- Work started in May 2001
 - Expected to ship late 2003
 - Based on XP code
 - Meant as minor upgrade between XP and Blackcomb

- Early problems
 - Project started to absorb many of the goals of Blackcomb
 - Many core developers pulled away to write patches for XP and 2003

“Microsoft co-president Jim Allchin, who had overall responsibility for the development and delivery of Windows, explained how development of Longhorn was "crashing into the ground" due in large part to the haphazard methods by which features were introduced and integrated into the core of the operating system, without a clear focus on an end-product.”
2003-2004 Fact-finding
- Allchin enlisted the help of two senior executives, Valentine and Srivastava
- Srivastava employed a team of core architects to visually map out the entirety of the Windows operating system

“I am not sure how the company lost sight of what matters to our customers (both business and home) the most, but in my view we lost our way. I think our teams lost sight of what bug-free means, what resilience means, what full scenarios mean, what security means, what performance means, how important current applications are, and really understanding what the most important problems [our] customers face are. I see lots of random features and some great vision, but that doesn’t translate into great products.

I would buy a Mac today if I was not working at Microsoft. ... Apple did not lose their way.” — January 2004 Memo to Gates & Balmer

• August 2004 reset
 - Original plans abandoned, restart project based on Windows 2003 SP1 code-base
 - Many Blackcomb features pulled out
 - WinFS
 - New development methodologies
 - Security Development Lifecycle
 - Many complaints, including from Billg

• Final launch January 30, 2007

• $6 Billion(?) price tag