3.4 This is sequential logic. If \(S \) and \(R \) are both high, the outputs don't change. If \(S \) goes low, \(Q \) goes high which makes \(Q \) go low. If \(R \) goes low, \(\overline{Q} \) goes high which makes \(\overline{Q} \) go low. If both \(S \) and \(R \) go low the latch malfunctions.

This is an active low \(\overline{S}R \) latch.

3.7 a) \underline{Combo Logic} \[
\begin{align*}
D^* &= \overline{S}K\overline{Q} + \overline{S}\overline{K} + S\overline{K}\overline{Q}
\end{align*}
\]

b) \underline{Combo Logic} \[
\begin{align*}
D^* &= \overline{S}K\overline{Q} + \overline{S}K + S\overline{K}\overline{Q}
\end{align*}
\]
3.12

3.13 \[\text{Frequency Range} = \frac{1}{N \times T_{pd}} \text{ to } \frac{1}{N \times T_{cd}} \]

3.19 See Lecture #7 notes

I.Q 3.3 A latch updates the output whenever the enable is high. It is level driven.

A flip-flop updates the output during a rising or falling edge. It is edge driven.