Derivation of SNR subject to quantization

\[\text{SNR} = 10 \log_{10} \frac{P_{\text{signal}}}{P_{\text{noise}}} \]

\[P_{\text{signal}} = \int_{-\infty}^{\infty} x^2 f(x) \, dx = 2^2 \]

\[P_{\text{noise}} = \int_{-\infty}^{\infty} e^2 f(e) \, de \]

(assume zero mean)

1. Assume that \(e[n] = x_q[n] - x[n] \), where \(e[n] \) is error signal, \(x_q[n] \) is a quantized version of \(x[n] \).

2. Assume that \(e[n] \) is i.i.d and uniformly distributed between \(-\frac{\Delta}{2} < e[n] < \frac{\Delta}{2} \), where \(\Delta \) is the quantization interval. Then:

\[\text{var}(e) = P_{\text{noise}} = \int_{-\infty}^{\infty} e^2 f(e) \, de = \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} \frac{e^2}{\Delta} \, de = \frac{\Delta^2}{12} \]

Now, \(\Delta = \frac{X_{\text{max}}}{2^{N-1}} \), where \(N \) is the number of bits used in quantization (see picture), so

\[P_{\text{noise}} = \frac{X_{\text{max}}^2}{2} \]

(12)
\[
\frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{2x^2}{\sigma_{\text{noise}}^2} = \frac{2x^2}{x_{\text{max}}^2} (12) \left(2^{2(N-1)} \right)
\]

\[\text{SNR} = 10 \log_{10} \frac{P_{\text{signal}}}{P_{\text{noise}}} = 20 \log_{10} \frac{3x}{10 X_{\text{max}}} + 10 \log_{10} 12 - 20 \log_{10} 10 + 20 N \log_{10} 2\]

Now since \[20 \log_{10} 2 \approx 6.02 \text{ dB}\]

Each bit adds roughly about 6.02 dB to the SNR (look at the term \[-20 \log_{10} 2\])

\[N \times 20 \log_{10} 2\]