Problems
P9, Pages 504
P10, Page 504
P13, Page 505
P14, Page 505
P20, Page 507
P21, Page 507

Also, the following two problems:

Problem A:
Suppose the distance between two ends of an Ethernet LAN is \(d \). Can you derive a formula to find the minimum frame size needed for an Ethernet packet? Using this formula, what is the minimum required packet size for an Ethernet that spans 3 kilometers?

Problem B:
Suppose two nodes, A and B, are attached to opposite ends of an 800 m cable, and that they each have one frame of 1,500 bits (including all headers and preambles) to send to each other. Both nodes attempt to transmit at time \(t=0 \). Suppose there are four repeaters between A and B, each inserting a 20-bit delay. Assume the transmission rate is 100 Mbps, and CSMA/CD with backoff intervals of multiples of 512 bits is used. After the first collision, A draws \(K=0 \) and B draws \(K=1 \) in the exponential backoff protocol. Ignore the jam signal and the 96-bit time delay.

1) What is the one-way propagation delay (including repeater delays) between A and B in seconds? Assume that the signal propagation speed is \(2.10^8 \) m/sec.
2) At what time (in seconds) is A’s packet completely delivered at B?
3) Now suppose that only A has a packet to send and that the repeaters are replaced with switches. Suppose that each switch has a 20-bit processing delay in addition to a store-and-forward delay. At what time, in seconds, is A’s packet delivered at B?