Problem 9, Page 504

(a) The probability that any node transmits successfully in a given slot, \(E(p) \)

\[
E(p) = Np(1-p)^{2(N-1)}
\]

\[
E'(p) = \frac{dE(p)}{dp} = N(1-p)^{2(N-1)} + Np(-1)(2N-2)(1-p)^{2N-3}
\]

\[
E'(p) = 0 \implies p = \frac{1}{2N-1} \equiv p^*
\]

(b) Efficiency of pure ALOHA

\[
E(p^*) = \frac{N}{2N-1}(1 - \frac{1}{2N-1})^{2N-2} = \left\{ \frac{N}{2N-1} \right\} \left\{ (1 - \frac{1}{2N-1})^{2N-1} \right\} \left\{ (1 - \frac{1}{2N-1})^{-1} \right\}
\]

Since

\[
\lim_{N \to \infty} \frac{N}{2N-1} = 1/2,
\]

\[
\lim_{N \to \infty} (1 - \frac{1}{2N-1})^{2N-1} = 1/e \quad \text{(from Hint given in previous problem, Problem 7)}
\]

and

\[
\lim_{N \to \infty} (1 - \frac{1}{2N-1})^{-1} = \lim_{N \to \infty} (1/(1 - \frac{1}{2N-1})) = 1,
\]

then

\[
\lim_{N \to \infty} E(p^*) = \frac{1}{2e}
\]

Problem 10, Page 504

(a) A’s average throughput is given by \(p_A(1 - p_B) \).

Total efficiency is \(p_A(1 - p_B) + p_B(1 - p_A) \).

(b) A’s throughput is \(p_A(1 - p_B) = 2p_B(1 - p_B) = 2p_B - 2(p_B)^2 \).

B’s throughput is \(p_B(1 - p_A) = p_B(1 - 2p - B) = p_B - 2(p_B)^2 \).

Clearly, A’s throughput is not twice as large as B’s.

In order to make \(p_A(1 - p_B) = 2p_B(1 - p_A) \), we need that \(p_A = 2(p_A/p_B) \).

(c) A’s throughput is \(2p(1 - p)^{N-1} \), and any other node has throughput \(p(1 - p)^{N-2}(1 - 2p) \).

Problem 13, Page 505

The length of a polling round is \(N(Q + R + d_{poll}) \).

The number of bits transmitted in a polling round is \(NQ \). Hence, the maximum throughput is

\[
\frac{NQ}{N(Q/R + d_{poll})} = \frac{R}{1 + d_{poll}R/Q}
\]

Problem 14, Page 505

(a) and (b), see figure below.

(c) 1. Forwarding table in E determines that the datagram should be routed to interface 192.168.3.002.
2. The adapter in E creates an Ethernet frame with Ethernet destination address 88-88-88-88-88-88.
3. Router 2 receives the frame and extracts the datagram. The forwarding table in this router indicates that the datagram is to be routed to 198.168.2.002.
4. Router 2 then sends the Ethernet frame with the destination address of 33-33-33-33-33-33 and source address of 55-55-55-55-55-55 via its interface with IP address of 198.168.2.003.
5. The process continues until the packet reaches Host B

(d) E knows (via its forwarding table) that it has go through Router 1 (Interface IP 192.168.3.002) to reach B. So, E
must rely on its ARP to determine the MAC address of 198.168.3.002. Host E sends out an ARP query packet within a broadcast Ethernet frame. Router 2 receives the query packet and recognizes its IP address; so it sends to Host E an ARP response packet, informing it of its MAC address. This ARP response packet is carried by an Ethernet frame with Ethernet destination address 77-77-77-77-77-77, so only E will grab it. From now on, E follows the steps given in c) above to send its frame to B.

Problem 20, Page 507

a) Let \(p_s \) be the probability that a given time slot contains a successful transmission. We have already derived \(p_s \) in class, which is
\[
 p_s = Np(1-p)^{N-1}.
\]

Now, let \(Y \) be a random variable representing the number of consecutive unproductive slots until a success. We can write
\[
P[Y = 0] = p_s, \quad P[Y = 1] = p_s(1-p_s), \quad P[Y = 2] = p_s(1-p_s)^2, \quad \text{etc.}
\]
That is,
\[
P[Y = m] = p_s(1-p_s)^m
\]
for all \(m = 0, 1, \ldots \)

Thus, the average number of consecutive unproductive slots, \(x \), is the expectation/average of \(Y \), which is by definition equal to \(x = E[Y] = \sum_{m=0}^{\infty} m p_s(1-p_s)^m = \frac{1-p_s}{p_s} \).

Hence,
\[
x = \frac{1-Np(1-p)^{N-1}}{Np(1-p)^N} \quad \text{and efficiency} = \frac{k}{k+2} = \frac{k}{k+1-Np(1-p)^N}.
\]

b) Maximizing efficiency is equivalent to minimizing \(x \), which is in turn equivalent to maximizing \(p_s \). We know from class that \(p_s \) is maximized for \(p_s^* = 1/N \).

c) efficiency = \[
 \frac{k}{k+2} = \frac{k}{k+1-Np(1-p)^N} \quad \text{and} \quad \lim_{N \to \infty} \frac{k}{k+1-Np(1-p)^N} = \frac{k}{k+e-1}
\]

d) It is clear that \(\frac{k}{k+e-1} \) goes to 1 as \(k \) to infinity.

Problem 21, Page 507

i) from A to left router:
Source MAC address: 00-00-00-00-00-00
Destination MAC address: 22-22-22-22-22-22
Source IP: 111.111.111.001
Destination IP: 133.333.333.003
Problem A
We need to make sure that one end of the Ethernet is able to detect the collision before it completes its transmission of a frame. Thus, a minimum frame size is required.

Let BW denote the bandwidth of the Ethernet. Consider the worst case for Ethernet’s collision detection:
1. At \(t=0 \) (bit times): A sends a frame
2. At \(t=d_{prop}^{-1} \) (bit times): B sends a frame right before it can sense A’s first bit.
3. At \(t=2d_{prop}^{-2} \) (bit times): If A finishes its transmission of its last bit just before B’s frame arrives at A, then, A won’t be able to detect a collision before finishing its transmission of a frame. Thus, in order for A to detect collision before finishing transmission, the minimum required frame size should be \(\geq 2d_{prop}^{-1} \) (bit times).

Assume that the signal propagation speed in 10BASE-T Ethernet is \(1.8 \times 10^8 \text{m/sec} \).
As \(d_{prop} = d/(1.8 \times 10^8) \times BW \) (here, we need to convert the propagation delay in seconds to bit times for the specific Ethernet link), we find the minimum required frame size is \(2 \times d/(1.8 \times 10^8) \times BW - 1 \) (bits). Or approximately we choose \(2 \times d/(1.8 \times 10^8) \times BW \) (bits). If \(d=2 \text{km} \), then minimum required frame size is: 222 bits.

Problem B
a) \(\frac{800 \text{m}}{2 \times 10^8 \text{m/sec}} + 4 \times \frac{20 \text{bits}}{100 \times 10^6 \text{bps}} = 4.8 \mu \text{sec} \)

b) First note, the transmission time of a single frame is give by \(\frac{1500}{100 \text{Mbps}} = 15 \text{ micro sec} \), longer than the propagation delay of a bit.
 - At time \(t = 0 \), both A and B transmit
 - At time \(t = 4.8 \mu \text{sec} \), both A and B detect a collision, and then abort.
 - At time \(t = 9.6 \mu \text{sec} \), last bit of B’s aborted transmission arrives at A.
 - At time \(t = 14.4 \mu \text{sec} \), first bit of A’s retransmission arrives at B.
 - At time \(t = 14.4 \mu \text{sec} + 1500 \text{bits}/(100 \times 10^6 \text{bps}) = 29.4 \mu \text{sec} \), A’s packet is completely delivered at B.

c) The line is divided into 5 segments by the switches, so the propagation delay between switches or between a switch and a host is given by \(\frac{800 \text{m}}{2 \times 10^8 \text{m/sec}} = 0.8 \mu \text{sec} \).

The delay from Host A to the first switch is give by 15 microsec (transmission delay), longer than propagation delay. Thus, the first switch will wait 16 = 15 + 0.8 + 0.2 (note, 0.2 is processing delay) till it is ready to send the frame to the second switch. Note that the store-and-forward delay at a switch is 15 microsec. Similarly each of the other 3 switches will wait for 16 microsec before ready for transmitting the frame. The total delay is: 16 × 4 + 15 + 0.8 = 79.8 micro sec.