Linear classification models: Perceptron
Classification problem

• Given input x, the goal is to predict y, which is a categorical variable
 - y is called the class label
 - x is the feature vector

• Example:
 - x: monthly income and bank saving amount;
 y: risky or not risky
 - x: bag-of-words representation of an email;
 y: spam or none spam
Linear Classifier

• We will begin with the simplest choice: linear classifiers

\[w_1 x_1 + w_2 x_2 + w_0 > 0 \]

\[w_1 x_1 + w_2 x_2 + w_0 < 0 \]

\[w_1 x_1 + w_2 x_2 + w_0 = 0 \]
Why linear model?

• Simplest model – fewer parameters to learn (requires less training data to learn reliably)

• Intuitively appealing -- draw a straight line (for 2-d inputs) or a linear hyper-plane (for higher dimensional inputs) to separate positive from negative

• Can be used to learn nonlinear models as well. How?
 – Introducing nonlinear features (e.g., $x_1^2, x_2^2, x_1 x_2 ...$)
 – Use kernel tricks (we will talk about this later this term)
Binary classification: General Setup

• Given a set of training examples \((x_1, y_1), \ldots, (x_n, y_n)\), where each \(x_i \in \mathbb{R}^d\), i.e., \(x_i = [x_{i1}, \ldots, x_{id}]^T\), \(y_i \in \{-1, 1\}\)

• Learn a linear function
 \[g(x, w) = w_0 + w_1 x_1 + \cdots + w_d x_d \]

Given a new example \(x = [x_1, \ldots, x_d]^T\), we will:
 – predict \(y(x) = 1\) if \(g(x, w) \geq 0\)
 – predict \(y(x) = 0\) otherwise

• In other words, the classifier can be represented as:
 – \(y(x) = \text{sign}(w_0 + w_1 x_1 + \cdots + w_d x_d) = \text{sign}(w^T x)\)
 where \(w = [w_0, w_1, \ldots, w_d]^T\), and \(x = [1, x_1, \ldots, x_d]^T\)

• Goal: find a good \(w\) that minimizes some loss function \(J(w)\)
0/1 Loss

\[J_{0/1}(w) = \frac{1}{n} \sum_{m=1}^{n} L(\text{sign}(w^T x_m), y_m) \]

where \(L(y', y) = 0 \) when \(y' = y \), otherwise \(L(y', y) = 1 \)

Issue: does not produce useful gradient since the surface of \(J_{0/1} \) is piece-wise flat
Perceptron Loss

\[
J_p(w) = \frac{1}{n} \sum_{m=1}^{n} \max(0, -y_m w^T x_m)
\]

- If \(\text{sign}(w^T x_m) = y_m \) (correct prediction) \(\max(0, -y_m w^T x_m) = 0 \)
- If \(\text{sign}(w^T x_m) \neq y_m \) (incorrect) \(\max(0, -y_m w^T x_m) = -y_m w^T x_m \),
 - A linear function of input features

- \(J_p \) is piecewise linear
 - Has a nice gradient leading to the solution region
Stochastic Gradient Descent

• The objective function consists of a sum over data points---
 Stochastic Gradient Descent updates the parameter after observing each example

\[
J(w) = \frac{1}{n} \sum_{m=1}^{n} \max(0, -y_m w^T x_m)
\]

\[
J_m(w) = \max(0, -y_m w^T x_m)
\]

\[
\nabla J_m = \begin{cases}
0 & \text{if } y_m w \cdot x_m > 0 \\
-y_m x_m & \text{otherwise}
\end{cases}
\]

Update Rule

After observing \((x_m, y_m)\), if it is a mistake \(w \leftarrow w + y_m x_m\)
Online Perceptron
(Stochastic gradient descent)

Let \(\mathbf{w} \leftarrow (0,0,0,...,0) \)

Repeat until convergence

for every training example \(m = 1,...,n \):

\[u_m \leftarrow \mathbf{w}^T \mathbf{x}_m \]

if \(y_m \cdot u_m \leq 0 \) \(\mathbf{w} \leftarrow \mathbf{w} + y_m \mathbf{x}_m \)
Red points belong to the positive class, blue points belong to the negative class

When an error is made, moves the weight in a direction that corrects the error
Convergence Theorem
(Block, 1962, Novikoff, 1962)

Given training example sequence \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\).

If \(\forall i, \|x_i\| \leq D\), and \(\exists \mathbf{u}, \|\mathbf{u}\| = 1\) and \(y_i \mathbf{u}^T \mathbf{x}_i \geq \gamma > 0\) for all \(i\), then the number of mistakes that the perceptron algorithm makes is at most \((D / \gamma)^2\).

Note that \(|\cdot|\) is the Euclidean norm of a vector.
Proof
Let \(\mathbf{u} \) be a solution vector, we know then \(\alpha \mathbf{u} \) is also a solution
Let \(\mathbf{x}_k \) be the kth mistake, we have \(\mathbf{w}(k + 1) = \mathbf{w}(k) + y_k \mathbf{x}_k \)

\[
\left\| \mathbf{w}(k + 1) - \alpha \mathbf{u} \right\|^2
= \left\| \mathbf{w}(k) + y_k \mathbf{x}_k - \alpha \mathbf{u} \right\|^2
= \left\| (\mathbf{w}(k) - \alpha \mathbf{u}) + y_k \mathbf{x}_k \right\|^2
= \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 + 2 y_k [\mathbf{x}_k \cdot (\mathbf{w}(k) - \alpha \mathbf{u})] + (y_k)^2 \left\| \mathbf{x}_k \right\|^2
= \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 + 2 y_k \mathbf{x}_k \cdot \mathbf{w}(k) - 2 y_k \alpha \mathbf{u} \cdot \mathbf{x}_k + \left\| \mathbf{x}_k \right\|^2
\leq \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 + 2 y_k \mathbf{x}_k \cdot \mathbf{w}(k) - 2 y_k \alpha \mathbf{u} \cdot \mathbf{x}_k + D^2 \quad \text{, because } \left\| \mathbf{x}_k \right\| \leq D
\leq \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 - 2 \alpha y_k \mathbf{u} \cdot \mathbf{x}_k + D^2 \quad \text{, because } y_k \mathbf{x}_k \cdot \mathbf{w}(k) \leq 0
\leq \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 - 2 \alpha \gamma + D^2 \quad \text{, because } y_k \mathbf{u} \cdot \mathbf{x}_k \geq \gamma
\]

Because \(\alpha \) is an arbitrary scaling factor, we can set \(\alpha = \frac{D^2}{\gamma} \)

\[
\left\| \mathbf{w}(k + 1) - \alpha \mathbf{u} \right\|^2 \leq \left\| \mathbf{w}(k) - \alpha \mathbf{u} \right\|^2 - D^2 \]
Proof (cont.)

By induction on k

$$
\|w(k + 1) - \alpha u\|^2 \leq \|w(1) - \alpha u\|^2 - kD^2 = \alpha^2 \|u\|^2 - kD^2 = \alpha^2 - kD^2
$$

$\iff \alpha^2 - kD^2 \geq 0$

$\iff k \leq \frac{\alpha^2}{D^2}$

$\iff k \leq (D / \gamma)^2$

($\alpha = \frac{D^2}{\gamma}$)
Margin

• γ is referred to as the **margin**
 – Min distance from data points to the decision boundary
 – Bigger margin \rightarrow easier the classification problem
 – Bigger margin \rightarrow more confidence in our prediction

• This concept leads to one of the recent most exciting developments in the ML field – support vector machines
Batch Perceptron Algorithm

Given: training examples \((x_m, y_m), \ m = 1, ..., n\)

Let \(w \leftarrow (0,0,0,\ldots,0)\)

repeat{
 \(\delta \leftarrow (0,0,0,\ldots,0)\)
 for \(m = 1\) to \(n\) {
 \(u_m \leftarrow w^T x_m\)
 if \(y_m u_m \leq 0\) : \(\delta \leftarrow \delta - y_m x_m\)
 }
 \(\delta \leftarrow \delta / n\)
 \(w \leftarrow w - \lambda \delta\)
}until \(|\delta| < \varepsilon\)
Online VS. Batch Perceptron

- Batch learning learns from a batch of examples collectively
- Online learning learns from one example at a time
- Both learning mechanisms are useful in practice
- Online Perceptron is sensitive to the order training examples are received
- In batch training, the corrections are accumulated and applied at once
- In online training, each correction is applied immediately once a mistake is encountered, which will change the decision boundary, thus different mistakes maybe encountered for online and batch training
- Online training performs stochastic gradient descent, an approximation to the real gradient descent used by the batch training
Not linearly separable case

• In such cases the algorithm will never converge! How to fix?
• Look for decision boundary that make as few mistakes as possible – NP-hard!
Fixing the Perceptron

• Idea one: only go through the data once, or a fixed number of times

Let $\mathbf{w} \leftarrow (0,0,0,...,0)$
Repeat for T times
 for each training example i:
 $u_i \leftarrow \mathbf{w}^T \mathbf{x}_i$
 if $y_i u_i \leq 0$ $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$

• At least this stops
• Problem: the final \mathbf{w} might not be good e.g. the last update could be on a total outlier
Voted Perceptron

- Keep intermediate hypotheses and have them vote [Freund and Schapire 1998]

Let \(\mathbf{w} \leftarrow (0,0,0,...,0) \)

\(c_0 = 0, \ n = 0 \)

Repeat for \(T \) times

- for each training example \(i \):
 - \(u_i \leftarrow \mathbf{w}^T \mathbf{x}_i \)
 - if \(y_i u_i \leq 0 \)
 - \(\mathbf{w}_{n+1} \leftarrow \mathbf{w}_n + y_i \mathbf{x}_i \)
 - \(n = n + 1 \)
 - \(c_n = 0 \)
 - else \(c_n = c_n + 1 \)

The output will be a collection of linear separators \(\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_M \) along with their survival time \(c_0, c_1, ..., c_M \)

The \(c \)'s can be viewed as measures of the reliability of the \(\mathbf{w} \)'s

For classification, take a weighted vote among all separators:

\[
\text{sign}\left\{ \sum_{n=0}^{N} c_n \text{sign}(\mathbf{w}_n^T \mathbf{x}) \right\}
\]
Summary of Perceptron

• Learns a Classifier $\hat{y} = f(x)$ directly – a discriminative method
• Applies gradient descent search to optimize the perceptron loss function
 – Online version performs stochastic gradient descent
• Guaranteed to converge in finite steps if linearly separable
 – Upper bound on the number of corrections needed
 – Inversely proportional to the margin of the optimal decision boundary
• If not linearly separable, voted perceptrons can be used