CS 331: Artificial Intelligence
Introduction

What is AI? (4 categories of defns)

<table>
<thead>
<tr>
<th>Thought process</th>
<th>Human performance</th>
<th>Rationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior</td>
<td>Systems that think like humans</td>
<td>Systems that think rationally</td>
</tr>
<tr>
<td></td>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>
Acting like humans (Turing Test)

Can a human interrogator, after posing some written questions, tell if the responses come from a human being or a computer?

Requirements for computer: natural language processing, knowledge representation, automated reasoning, machine learning, vision and robotics (the last two are for the “total Turing Test”)

Problems with the Turing Test

- Not reproducible
- Can’t be analyzed mathematically
- Tends to focus on human-like errors, linguistic tricks, etc.
- Does not produce useful computer programs

AI researchers believe it’s more important to study the underlying principles of intelligence than duplicating how humans act
Thinking Humanly (Cognitive Modeling)

- Models of the internal workings of the human mind
- Validation:
 - Compare models with actual behavior of human subjects (cognitive science)
 - Compare models with neurological activity in the brain (cognitive neuroscience)
- AI is now distinct from both cognitive science and cognitive neuroscience

Thinking rationally (Laws of Thought)

- Rational = conclusions are provable from inputs and prior knowledge
- Ensure all actions by a computer are justifiable (i.e., “rational”)

Problems:
- Hard to represent informal knowledge formally, especially when not 100% certain
- Computationally expensive
Acting Rationally (Rational Agents)

• “Agent”: something that acts
• “Rational” means more than just logically justified. It also means “doing the right thing”
• “Rational agent”: an agent that acts to achieve the best outcome given its resources

Rational Agents

- Adjust amount of reasoning according to available resources and importance of the result
- This is one thing that makes AI hard
AI Timeline

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1943-1956</td>
<td>The gestation of AI</td>
</tr>
<tr>
<td>1956</td>
<td>The birth of AI</td>
</tr>
<tr>
<td>1952-1969</td>
<td>Early enthusiasm, great expectations</td>
</tr>
<tr>
<td>1966-1973</td>
<td>A dose of reality</td>
</tr>
<tr>
<td>1969-1979</td>
<td>Knowledge-based systems</td>
</tr>
<tr>
<td>1980-present</td>
<td>AI becomes a successful industry</td>
</tr>
<tr>
<td>1986-present</td>
<td>The return of neural networks</td>
</tr>
<tr>
<td>1987-present</td>
<td>AI adopts the scientific method</td>
</tr>
<tr>
<td>1995-present</td>
<td>The emergence of intelligent agents</td>
</tr>
<tr>
<td>2001</td>
<td>Big Data</td>
</tr>
</tbody>
</table>

AI Today

- Deep Blue: first computer program to defeat the world champion in chess
- NavLab: minivan drove itself across the US on its own 98% of the time
- HipNav: robot assistant in hip replacement surgery
- Proverb: crossword puzzle solver
- Google news: assembles “live” newspaper
Other AI applications in the real world

- Credit card fraud detection
- Medical diagnosis programs
- Search engines
- Collaborative filtering
- Spam filtering
- Disease outbreak detection
- Opponents in video games

Surprises in AI Research

- Tasks difficult for humans have turned out to be “easy”
 - Chess
 - Checkers, Othello, Backgammon
 - Logistics planning
 - Airline scheduling
 - Fraud detection
 - Sorting mail
 - Proving theorems
 - Crossword puzzles
Surprises in AI Research

- Tasks easy for humans have turned out to be hard.
 - Speech recognition
 - Face recognition
 - Composing music/art
 - Autonomous navigation
 - Motor activities (walking)
 - Language understanding
 - Common sense reasoning (example: how many legs does a fish have?)

AI Courses at OSU

1. **CS331: Introduction to AI (Spring quarter)**
 - Search
 - Games
 - Knowledge Representation
 - Bayesian Networks

2. **CS434: Machine Learning and Data Mining (Fall quarter)**
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
1. Search

8-puzzle: Beginning with the start state, slide tiles horizontally or vertically until you get to the goal state.

We will discuss:
Uninformed search
Informed search
Local search
2. Games (Fully observable)

- How do you create a program to play tic-tac-toe intelligently?

- What about chess?

2. Games (Hidden Information)

The game of chicken: two cars (usually driven by macho guys with something to prove) drive at each other on a narrow road. The first one to swerve loses.
2. Games (Hidden information)

Do I call or fold?

I'm all in

What about poker?

3. Knowledge Representation

Knowledge Base
- All Canadians play hockey
- Everyone that plays hockey is a goon
- All Canadians are evil
- Your professor is Canadian
- Evil professors have difficult midterms

From this knowledge base, can we derive the following?
- Your professor plays hockey
- You will have a difficult midterm
4. Bayesian Networks

Example: Learning to classify emails as spam or not spam

| P(Spam) = 0.88 | P(Spam) = 0.28 |
|----------------|

Private And Confidential

Dear Friend,

It is with heart of hope that I write to seek your help in the context below. I am Mrs. Jumai Asfatu Abacha, the second wife of the former Nigeria head of state who died on the 8th of June, 1998.

Having gotten your address through the internet, I have no doubt on your goodwill to assist us in receiving into your custody (For Safety) the sum of Forty-Eight Million, Five Hundred Thousand United States Dollars (US$48.5M) willed and deposited in my favour by my Late husband…

Professor Wong,

I tried to hand in homework 1 electronically but the handin script was broken. I’ve attached my homework in this email…