CS 162
Intro to CS II

Structs vs. Classes
Odds and Ends...

• Assignment #1 due Sunday, 11:59pm
 – Upload a assign1.tar to TEACH!!!
• Print Worksheet prior to recitation next week!
Unix Redirection Demo...

```
flip2 ~/cs162/private/sec2 169% arr_struct
OR
10
OR
10
4
3
2
1
0
flip2 ~/cs162/private/sec2 170% arr_struct < state.txt
Oregon
1000
4
3
2
1
0
flip2 ~/cs162/private/sec2 171%
```
Unix Redirection Demo...

```
flip2 ~/cs162/private/sec2 178% cat new.txt
Oregon
1000
4
3
2
1
0
flip2 ~/cs162/private/sec2 179% arr_struct < state.txt >> new.txt
flip2 ~/cs162/private/sec2 180% cat new.txt
Oregon
1000
4
3
2
1
0
Oregon
1000
4
3
2
1
0
flip2 ~/cs162/private/sec2 181%
```
Structs vs. Classes

• Differences
 - Structs do not contain functions
 - The members are public by default
 - Classes do contain functions
 - The members are private

• Similarities
 * You are making a user-defined type
 * They both contain members
 * The name by itself is the container, not the address
Class vs. Object

- Class declaration is type.
- Object is an instance of a class.
- Example:
  ```
  class Point {
    public:
    int x;
    int y;
  }
  
  int main() {
    Point p1, p2;
    p1.x=10;  p1.y=20;
    p2.x=5;   p2.y=6;
    return 0;
  }
  ```
class Point {
public:
 int x;
 int y;
 void translate(int dx, int dy); //Translates to a new x, y location given distance
};

int main () {
 Point p1, p2;
 p1.x=10; p1.y=20;
 p2.x=5; p2.y=6;
 p1.translate(-1, 3);
 p2.translate(2, -2);
 return 0;
}

void Point::translate(int dx, int dy) {
 x += dx;
 y += dy;
}
Can we set the values for x and y?

class Point {
 public:
 int x = 0; //This is not allowed!!!
 int y = 0; //This is not allowed!!!
 void translate(int dx, int dy); //Translates to a new x, y location given distance

 int main () {
 Point p1, p2;
 p1.x=10; p1.y=20;
 p2.x=5; p2.y=6;

 p1.translate(-1, 3);
 p2.translate(2, -2);
 return 0;
 }
 void translate(int dx, int dy) {
 x += dx;
 y += dy;
 }
};
What if we made states private?

class Point {
public:
 void translate(int dx, int dy);
private:
 int x;
 int y;
};

int main () {
 Point p1, p2;
 p1.x=10; p1.y=20; //This is not allowed!!!
 p2.x=5; p2.y=6; //This is not allowed!!!
 p1.translate(1, 3);
 p2.translate(2, -2);
 return 0;
}

void Point::translate(int dx, int dy) {
 x += dx;
 y += dy;
}
Encapsulation/ADTs

• Why do this?
• How do we set/get private member variables?
 – Accessor and Mutator Functions
• Accessor: get...
• Mutator: set...
Write the Mutator and Accessor Functions...

class Point {
public:
 //Accessor Functions
 //Mutator Functions
private:
 int x;
 int y;
};
Encapsulation

class Point {
 public:
 void set_xy(int theX, int theY); //Mutator Function
 private:
 int x;
 int y;
};

int main () {
 Point p1, p2;
 p1.set_xy(1, 1);
 p2.set_xy(2, 2);
 return 0;
}

void Point::set_xy(int theX, int theY) {
 x = theX;
 y = theY;
}
How do we write an Accessor Function?

class Point {
 public:
 void set_xy(int theX, int theY); //Mutator Function
 int get_x(); //Accessor Function
 int get_y(); //Accessor Function
 private:
 int x;
 int y;
};

int main () {
 Point p1;
 p1.set_xy(1, 1);
 std::cout << p1.get_x(); << "\t" << p1.get_y() << "\n";
 return 0;
}

int Point::get_x() {
 return x;
}

int Point::get_y() {
 return y;
}
Over the Weekend
Create a Date Class...

• Determine the members and their types for the date class.

• Write the accessor and mutator functions...