This part is called an **agent**.

Agent: anything that perceives its environment through sensors and acts on that environment through actuators.
Example: Vacuum Cleaner Agent

<table>
<thead>
<tr>
<th>Percept Sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, Clean}</td>
<td>Right</td>
</tr>
<tr>
<td>{A, Dirty}</td>
<td>Suck</td>
</tr>
<tr>
<td>{B, Clean}</td>
<td>Left</td>
</tr>
<tr>
<td>{B, Dirty}</td>
<td>Suck</td>
</tr>
<tr>
<td>{A, Clean}, {A, Clean}</td>
<td>Right</td>
</tr>
<tr>
<td>{A, Clean}, {A, Dirty}</td>
<td>Suck</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>{A, Clean}, {A, Clean}, {A, Clean}</td>
<td>Right</td>
</tr>
<tr>
<td>{A, Clean}, {A, Clean}, {A, Dirty}</td>
<td>Suck</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Agent-Related Terms

- **Percept sequence**: A complete history of everything the agent has ever perceived. Think of this as the state of the world from the agent’s perspective.
- **Agent function (or Policy)**: Maps percept sequence to action (determines agent behavior)
- **Agent program**: Implements the agent function
Question

What’s the difference between the agent function and the agent program?

Rationality

• Rationality: do the action that causes the agent to be most successful
• How do you define success? Need a performance measure
• Eg. reward agent with one point for each clean square at each time step (could penalize for costs and noise)

Important point: Design performance measures according to what one wants in the environment, not according to how one thinks the agent should behave
Rationality

Rationality depends on 4 things:
1. Performance measure of success
2. Agent’s prior knowledge of environment
3. Actions agent can perform
4. Agent’s percept sequence to date

Rational agent: for each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Learning

Successful agents split task of computing policy in 3 periods:
1. Initially, designers compute some prior knowledge to include in policy
2. When deciding its next action, agent does some computation
3. Agent learns from experience to modify its behavior

Autonomous agents: Learn from experience to compensate for partial or incorrect prior knowledge.
PEAS Descriptions of Task Environments

Performance, Environment, Actuators, Sensors

Example: Automated taxi driver

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe, fast, legal, comfortable trip, maximize profits</td>
<td>Roads, other pedestrians, customers</td>
<td>Steering, accelerator, brake, signal, horn, display</td>
<td>Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard</td>
</tr>
</tbody>
</table>

Properties of Environments

<table>
<thead>
<tr>
<th>Fully observable: can access complete state of environment at each point in time</th>
<th>vs</th>
<th>Partially observable: could be due to noisy, inaccurate or incomplete sensor data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic: if next state of the environment completely determined by current state and agent’s action</td>
<td>vs</td>
<td>Stochastic: a partially observable environment can appear to be stochastic. (Strategic: environment is deterministic except for actions of other agents)</td>
</tr>
<tr>
<td>Episodic: agent’s experience divided into independent, atomic episodes in which agent perceives and performs a single action in each episode.</td>
<td>vs</td>
<td>Sequential: current decision affects all future decisions</td>
</tr>
<tr>
<td>Static: agent doesn’t need to keep sensing while decides what action to take, doesn’t need to worry about time</td>
<td>vs</td>
<td>Dynamic: environment changes while agent is thinking (Semidynamic: environment doesn’t change with time but agent’s performance does)</td>
</tr>
<tr>
<td>Discrete: (note: discrete/continuous distinction applies to states, time, percepts, or actions)</td>
<td>vs</td>
<td>Continuous</td>
</tr>
<tr>
<td>Single agent</td>
<td>vs</td>
<td>Multiagent: agents affect each others performance measure – cooperative or competitive</td>
</tr>
</tbody>
</table>
Examples of task environments

<table>
<thead>
<tr>
<th>Task Environment</th>
<th>Observable</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossword puzzle</td>
<td>Fully</td>
<td>Deterministic</td>
<td>Sequential</td>
<td>Static</td>
<td>Discrete</td>
<td>Single</td>
</tr>
<tr>
<td>Chess with a clock</td>
<td>Fully</td>
<td>Strategic</td>
<td>Sequential</td>
<td>Semi</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
<tr>
<td>Poker</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Static</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
<tr>
<td>Backgammon</td>
<td>Fully</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Static</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
<tr>
<td>Taxi driving</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Multi</td>
</tr>
<tr>
<td>Medical diagnosis</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Multi</td>
</tr>
<tr>
<td>Image analysis</td>
<td>Fully</td>
<td>Deterministic</td>
<td>Episodic</td>
<td>Semi</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Part-picking robot</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Episodic</td>
<td>Semi</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Refinery controller</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Continuous</td>
<td>Single</td>
</tr>
<tr>
<td>Interactive English tutor</td>
<td>Partially</td>
<td>Stochastic</td>
<td>Sequential</td>
<td>Dynamic</td>
<td>Discrete</td>
<td>Multi</td>
</tr>
</tbody>
</table>

Agent Programs

- Agent program: implements the policy
- Simplest agent program is a table-driven agent

```plaintext
function TABLE-DRIVEN-AGENT(percept) returns an action

  static: percepts, a sequence, initially empty
  table, a table of actions, indexed by percept sequences, initially fully specific

  append percept to the end of percepts
  action ← LOOKUP(percepts, table)

  return action
```

This is a BIG table…clearly not feasible!
4 Kinds of Agent Programs

- Simplex reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

Simple Reflex Agent

- Selects actions using only the current percept
- Works on condition-action rules:
 \[
 \text{if condition then action}
 \]

\[
\text{function SIMPLE-REFLEX-AGENT(percept) returns an action}
\]

\[
\text{static: rules, a set of condition-action rules}
\]

\[
\text{state} \leftarrow \text{INTERPRET-INPUT(percept)}
\]

\[
\text{rule} \leftarrow \text{RULE-MATCH(state, rules)}
\]

\[
\text{action} \leftarrow \text{RULE-ACTION[rule]}
\]

\[
\text{return action}
\]
Simple Reflex Agents

• Advantages:
 – Easy to implement
 – Uses much less memory than the table-driven agent

• Disadvantages:
 – Will only work correctly if the environment is fully observable
 – Infinite loops
Model-based Reflex Agents

- Maintain some internal state that keeps track of the part of the world it can’t see now
- Needs model (encodes knowledge about how the world works)

```plaintext
function REFLEX-AGENT-WITH-STATE(percept) returns an action

static: state, a description of the current world state
rules, a set of condition-action rules
action, the most recent action, initially none

state ← UPDATE-STATE(state, action, percept)
rule ← RULE-MATCH(state, rules)
action ← RULE-ACTION[rule]
return action
```
Goal-based Agents

- Goal information guides agent’s actions (looks to the future)
- Sometimes achieving goal is simple e.g. from a single action
- Other times, goal requires reasoning about long sequences of actions
- Flexible: simply reprogram the agent by changing goals
Utility-based Agents

- What if there are many paths to the goal?
- Utility measures which states are preferable to other states
- Maps state to real number (utility or “happiness”)

Utility-based Agents
Learning Agents

Think of this as outside the agent since you don’t want it to be changed by the agent.

Maps percepts to actions.
Learning Agents

Critic: Tells learning element how well the agent is doing with respect of the performance standard (because the percepts don’t tell the agent about its success/failure)

Responsible for improving the agent’s behavior with experience

Suggest actions to come up with new and informative experiences

What you should know

• What it means to be rational
• Be able to do a PEAS description of a task environment
• Be able to determine the properties of a task environment
• Know which agent program is appropriate for your task
In-class Exercise

Develop a PEAS description of the task environment for a movie recommendation agent

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Actuators</td>
<td></td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
</tr>
</tbody>
</table>

In-class Exercise

Describe the task environment

<table>
<thead>
<tr>
<th>Fully Observable</th>
<th>Partially Observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Stochastic</td>
</tr>
<tr>
<td>Episodic</td>
<td>Sequential</td>
</tr>
<tr>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Discrete</td>
<td>Continuous</td>
</tr>
<tr>
<td>Single agent</td>
<td>Multi-agent</td>
</tr>
</tbody>
</table>
In-class Exercise

• Select a suitable agent design for the movie recommendation agent