3. Beam Search

Local Beam Search

Travelling Salesman Problem

Keeps track of k states rather than just 1. k=2 in this example. Start with k randomly generated states.

Generate all successors of all the k states

None of these is a goal state so we continue

Select the best k successors from the complete list
Local Beam Search Example

Travelling Salesman Problem (k=2)

A → B → C → D

Repeat the process until goal found

Local Beam Search

- How is this different from k random restarts in parallel?
- Random-restart search: each search runs independently of the others
- Local beam search: useful information is passed among the k parallel search threads
- Eg. One state generates good successors while the other k-1 states all generate bad successors, then the more promising states are expanded

Local Beam Search

- Disadvantage: all k states can become stuck in a small region of the state space
- To fix this, use stochastic beam search
- Stochastic beam search:
 - Doesn’t pick best k successors
 - Chooses k successors at random, with probability of choosing a given successor being an increasing function of its value

4. Genetic Algorithms

Genetic Algorithms

- Like natural selection in which an organism creates offspring according to its fitness for the environment
- Essentially a variant of stochastic beam search that combines two parent states (just like sexual reproduction)
- Over time, population contains individuals with high fitness

Definitions

- Fitness function: Evaluation function in GA terminology
- Population: k randomly generated states (called individuals)
- Individual: String over a finite alphabet

“gene”

“chromosome”
Definitions

- **Selection**: Pick two random individuals for reproduction
- **Crossover**: Mix the two parent strings at the crossover point

```
Parents
1 2 3 4 5 6 7 8
5 4 3 2 1 6 7 8

Crossover point randomly chosen

Offspring
4 8 1 5 6 2 3 4
4 8 1 5 6 0 3 4
```

Definitions

- **Mutation**: randomly change a location in an individual’s string with a small independent probability

```
4 8 1 5 6 2 3 4
4 8 1 5 6 0 3 4
```

Randomness aids in avoiding small local extrema

GA Overview

Population = Initial population
Iterate until some individual is fit enough or enough time has elapsed:

NewPopulation = Empty
For 1 to size(Population)
 Select pair of parents (P₁, P₂) using Selection(P, Fitness Function)
 Child C = Crossover(P₁, P₂)
 With small random probability, Mutate(C)
 Add C to NewPopulation
Population = NewPopulation
Return individual in Population with best Fitness Function

This pseudocode only produces one child. Could also do a variant like before where we produce 2 children

Lots of variants

- Variant 1: Culling - individuals below a certain threshold are removed
- Variant 2: Selection based on:

\[
P(X \text{ selected}) = \frac{Eval(X)}{\sum_{Y \in \text{Population}} Eval(Y)}
\]

Example: 8-queens

- Fitness Function: number of nonattacking pairs of queens (28 is the value for the solution)
- Represent 8-queens state as an 8 digit string in which each digit represents position of queen

```
8 2 7 5 2 4 1 2
```
Example: 8-queens

Example: 8-queens (Fitness Function)

Example: 8-queens (Selection)

Example: 8-queens (Crossover)

Example: 8-queens (Mutation)

Implementation details on Genetic Algorithms

- Initially, population is diverse and crossover produces big changes from parents
- Over time, individuals become quite similar and crossover doesn’t produce such a big change
- Crossover is the big advantage:
 - Preserves a big block of “genes” that have evolved independently to perform useful functions
 - E.g. Putting first 3 queens in positions 2, 4, and 6 is a useful block
Schemas

- A substring in which some of the positions can be left unspecified eg. 246*****
- Instances: strings that match the schema
- If the average fitness of the instances of a schema is above the mean, then the number of instances of the schema within the population will grow over time

Schemas

- Schemas are important if contiguous blocks provide a consistent benefit
- Genetic algorithms work best when schemas correspond to meaningful components of a solution

The fine print…

- The representation of each state is critical to the performance of the GA
- Lots of parameters to tweak but if you get them right, GAs can work well
- Limited theoretical results (skeptics say it’s just a big hack)

And remember….

![Genetic Algorithms Tip]

GENETIC ALGORITHMS TIP:
ALWAYS INCLUDE THIS IN YOUR FITNESS FUNCTION

(From http://www.xkcd.com/534/)

Discrete Environments

Gradient Descent

Hillclimbing pseudocode

X ← Initial configuration
Iterate:
E ← Eval(X)
N ← Neighbors(X)
For each Xᵢ in N
Eᵢ ← Eval(Xᵢ)
E* ← Highest Eᵢ
X* ← Xᵢ with highest Eᵢ
If E* > E
X ← X*
Else
Return X

- In discrete state spaces, the # of neighbors is finite.
- What if there is a continuum of possible moves leading to an infinite # of neighbors?
Local Search in Continuous State Spaces

- Almost all real world problems involve continuous state spaces
- To perform local search in continuous state spaces, you need techniques from calculus
- The main technique to find a minimum is called gradient descent (or gradient ascent if you want to find the maximum)

Gradient Descent

- What is the gradient of a function $f(x)$?
 - Usually written as $\nabla f (x) = \frac{\partial}{\partial x} f(x)$
 - $\nabla f (x)$ (the gradient itself) represents the direction of the steepest slope
 - $|\nabla f (x)|$ (the magnitude of the gradient) tells you how big the steepest slope is

Suppose we want to find a local minimum of a function $f(x)$. We use the gradient descent rule:

$$x \leftarrow x - \alpha \nabla f(x)$$

Suppose we want to find a local maximum of a function $f(x)$. We use the gradient ascent rule:

$$x \leftarrow x + \alpha \nabla f(x)$$

Question of the Day

- Why not just calculate the global optimum using $\nabla f (x) = 0$?
 - May not be able to solve this equation in closed form
 - If you can’t solve it globally, you can still compute the gradient locally (like we are doing in gradient descent)

Multivariate Gradient Descent

- What happens if your function is multivariate eg. $f(x_1, x_2, x_3)$?
- Then
 $$\nabla f (x_1, x_2, x_3) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \right)$$
- The gradient descent rule becomes:
 $$x_1 \leftarrow x_1 - \alpha \frac{\partial f}{\partial x_1}$$
 $$x_2 \leftarrow x_2 - \alpha \frac{\partial f}{\partial x_2}$$
 $$x_3 \leftarrow x_3 - \alpha \frac{\partial f}{\partial x_3}$$
Multivariate Gradient Ascent

More About the Learning Rate

- If \(\alpha \) is too large
 - Gradient descent overshoots the optimum point
- If \(\alpha \) is too small
 - Gradient descent requires too many steps and will take a very long time to converge

Weaknesses of Gradient Descent

1. Can be very slow to converge to a local optimum, especially if the curvature in different directions is very different
2. Good results depend on the value of the learning rate \(\alpha \)
3. What if the function \(f(x) \) isn’t differentiable at \(x \)?

What you should know

- Be able to formulate a problem as a Genetic Algorithm
- Understand what crossover and mutation do and why they are important
- Differences between hillclimbing, simulated annealing, local beam search, and genetic algorithms
- Understand how gradient descent works, including its strengths and weaknesses
- Understand how to derive the gradient descent rule