Dealing with Uncertainty

• We want to get to the point where we can reason with uncertainty
• This will require using probability e.g. probability that it will rain today is 0.99
• We will review the fundamentals of probability
Random Variables

- The basic element of probability is the random variable
- Think of the random variable as an event with some degree of uncertainty as to whether that event occurs
- Random variables have a domain of values it can take on
Random Variables

3 types of random variables:
1. Boolean random variables
2. Discrete random variables
3. Continuous random variables

Example:
• \(\text{ProfLate} \) is a random variable for whether your prof will be late to class or not
• The domain of \(\text{ProfLate} \) is \(\{true, false\} \)
 – \(\text{ProfLate} = true \): proposition that prof will be late to class
 – \(\text{ProfLate} = false \): proposition that prof will not be late to class
Random Variables

Example:

- \textit{ProfLate} is a random variable for whether your prof will be late to class or not
- The domain of \textit{ProfLate} is \textit{<true, false>}
 - \textit{ProfLate} = \textit{true}: proposition that prof will be late to class
 - \textit{ProfLate} = \textit{false}: proposition that prof will not be late to class

You can assign some degree of belief to this proposition e.g. \(P(\text{ProfLate} = \text{true}) = 0.9 \)

And to this one e.g. \(P(\text{ProfLate} = \text{false}) = 0.1 \)
Random Variables

- We will refer to random variables with capitalized names e.g. X, Y, $ProfLate$
- We will refer to names of values with lower case names e.g. x, y, $proflate$
- This means you may see a statement like $ProfLate = proflate$
 - This means the random variable $ProfLate$ takes the value $prolate$ (which can be true or false)
- Shorthand notation:
 $ProfLate = true$ is the same as $prolate$ and $ProfLate = false$ is the same as $¬prolate$

Boolean Random Variables

- Take the values true or false
- E.g. Let A be a Boolean random variable
 - $P(A = false) = 0.9$
 - $P(A = true) = 0.1$
Discrete Random Variables

Allowed to take on a finite number of values

\[P(DrinkSize=\text{small}) = 0.1 \]
\[P(DrinkSize=\text{medium}) = 0.2 \]
\[P(DrinkSize=\text{large}) = 0.7 \]

Discrete Random Variables

Values of the domain must be:

- Mutually Exclusive i.e. \(P(A = v_i \text{ AND } A = v_j) = 0 \) if \(i \neq j \)

 This means, for instance, that you can’t have a drink that is both small and medium

- Exhaustive i.e. \(P(A = v_1 \text{ OR } A = v_2 \text{ OR } \ldots \text{ OR } A = v_k) = 1 \)

 This means that a drink can only be either small, medium or large. There isn’t an extra large.
Discrete Random Variables

Values of the domain must be:

- **Mutually Exclusive** i.e. \(P(A = v_i \text{ AND } A = v_j) = 0 \) if \(i \neq j \)

 This means, for instance, that you can’t have a drink that is both small and medium.

- **Exhaustive** i.e. \(P(A = v_1 \text{ OR } A = v_2 \text{ OR } ... \text{ OR } A = v_k) = 1 \)

 This means that a drink can only be either small, medium or large.

Since we now have multi-valued discrete random variables we can’t write \(P(a) \) or \(P(\neg a) \) anymore.

We have to write \(P(A = v_i) \) where \(v_i = \) a value in \(\{v_1, v_2, ..., v_k\} \)
Continuous Random Variables

- Can take values from the real numbers
- E.g. They can take values from [0, 1]
- Note: We will primarily be dealing with discrete random variables
- (The next slide is just to provide a little bit of information about continuous random variables)

Probability Density Functions

Discrete random variables have probability distributions:

Continuous random variables have probability density functions e.g:
Probabilities

• We will write $P(A=true)$ as “the fraction of possible worlds in which A is true”
• We can debate the philosophical implications of this for the next 4 hours
• But we won’t

Probabilities

• We will sometimes talk about the probabilities of all possible values of a random variable
• Instead of writing
 – $P(A=false) = 0.25$
 – $P(A=true) = 0.75$
• We will write $P(A) = (0.25, 0.75)$

Note the boldface!
Visualizing A

Event space of all possible worlds

Its area is 1

P(a) = Area of reddish oval

Worlds in which A is true

Worlds in which A is false

The Axioms of Probability

• $0 \leq P(a) \leq 1$
• $P(true) = 1$
• $P(false) = 0$
• $P(a \ OR \ b) = P(a) + P(b) - P(a \ AND \ b)$

The logical OR is equivalent to set union \cup.
The logical AND is equivalent to set intersection \cap. Sometimes, I’ll write it as $P(a, b)$

These axioms are often called Kolmogorov’s axioms in honor of the Russian mathematician Andrei Kolmogorov
Interpreting the axioms

• $0 \leq \text{P}(a) \leq 1$
• $\text{P} true = 1$
• $\text{P} false = 0$
• $\text{P} (a OR b) = \text{P}(a) + \text{P}(b) - \text{P}(a, b)$

The area of P(a) can’t get any smaller than 0
And a zero area would mean that there is no world in which a is not false

The area of P(a) can’t get any bigger than 1
And an area of 1 would mean all worlds will have a is true
Interpreting the axioms

- $0 \leq P(a) \leq 1$
- $P(\text{true}) = 1$
- $P(\text{false}) = 0$
- $P(a \text{ OR } b) = P(a) + P(b) - P(a, b)$

These Axioms are Not to be Trifled With

- There have been attempts to do different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - Non-monotonic reasoning

- But the axioms of probability are the only system with this property:
 If you gamble using them you can’t be unfairly exploited by an opponent using some other system [de Finetti 1931]
Prior Probability

- We can consider $P(A)$ as the unconditional or prior probability
 - E.g. $P(\text{ProfLate} = \text{true}) = 1.0$
- It is the probability of event A in the absence of any other information
- If we get new information that affects A, we can reason with the conditional probability of A given the new information.

Conditional Probability

- $P(A \mid B) = \text{Fraction of worlds in which } B \text{ is true that also have } A \text{ true}$
- Read this as: “Probability of A conditioned on B”
- Prior probability $P(A)$ is a special case of the conditional probability $P(A \mid \text{ })$ conditioned on no evidence
Conditional Probability Example

$H = "Have a headache"

$F = "Coming down with Flu"

$P(H) = 1/10$

$P(F) = 1/40$

$P(H | F) = 1/2$

"Headaches are rare and flu is rarer, but if you’re coming down with ‘flu there’s a 50-50 chance you’ll have a headache."

Conditional Probability

$P(H | F) =$ Fraction of flu-inflicted worlds in which you have a headache

$= \frac{\# \text{ worlds with flu and headache}}{\# \text{ worlds with flu}}$

$= \frac{\text{Area of "H and F" region}}{\text{Area of "F" region}}$

$= \frac{P(H, F)}{P(F)}$

$H = "Have a headache"

$F = "Coming down with Flu"

$P(H) = 1/10$

$P(F) = 1/40$

$P(H | F) = 1/2$
Definition of Conditional Probability

\[P(A \mid B) = \frac{P(A, B)}{P(B)} \]

Corollary: The Chain Rule (aka The Product Rule)

\[P(A, B) = P(A \mid B)P(B) \]

Important Note

\[P(A \mid B) + P(\neg A \mid B) = 1 \]

But:

\[P(A \mid B) + P(A \mid \neg B) \text{ does not always } = 1 \]
The Joint Probability Distribution

• $P(A, B)$ is called the joint probability distribution of A and B
• It captures the probabilities of all combinations of the values of a set of random variables

For example, if A and B are Boolean random variables, then $P(A,B)$ could be specified as:

<table>
<thead>
<tr>
<th>$P(A=false, B=false)$</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(A=false, B=true)$</td>
<td>0.25</td>
</tr>
<tr>
<td>$P(A=true, B=false)$</td>
<td>0.25</td>
</tr>
<tr>
<td>$P(A=true, B=true)$</td>
<td>0.25</td>
</tr>
</tbody>
</table>
The Joint Probability Distribution

- Now suppose we have the random variables:
 - $Drink = \{\text{coke, sprite}\}$
 - $Size = \{\text{small, medium, large}\}$
- The joint probability distribution for $P(Drink, Size)$ could look like:

<table>
<thead>
<tr>
<th>Event</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(Drink=\text{coke, Size=small})$</td>
<td>0.1</td>
</tr>
<tr>
<td>$P(Drink=\text{coke, Size=medium})$</td>
<td>0.1</td>
</tr>
<tr>
<td>$P(Drink=\text{coke, Size=large})$</td>
<td>0.3</td>
</tr>
<tr>
<td>$P(Drink=\text{sprite, Size=small})$</td>
<td>0.1</td>
</tr>
<tr>
<td>$P(Drink=\text{sprite, Size=medium})$</td>
<td>0.2</td>
</tr>
<tr>
<td>$P(Drink=\text{sprite, Size=large})$</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Full Joint Probability Distribution

- Suppose you have the complete set of random variables used to describe the world
- A joint probability distribution that covers this complete set is called the full joint probability distribution
- Is a complete specification of one’s uncertainty about the world in question
- Very powerful: Can be used to answer any probabilistic query